Вселенная Стивена Хокинга - [22]
Явление интерференции между частицами играет ключевую роль в нашем понимании строения атомов – основных структурных элементов, лежащих в основе химии и биологии, и тех самых «кирпичиков», из которых состоим мы и всё вокруг нас. В начале ХХ века считалось, что атомы похожи на Солнечную систему, – в них электроны (отрицательно заряженные частицы) обращаются вокруг положительно заряженного ядра в центре. Считалось, что взаимное притяжение положительных и отрицательных электрических зарядов удерживает электроны на их орбитах, подобно тому как гравитационное притяжение между Солнцем и планетами удерживает планеты на их орбитах. Проблема состояла в том, что согласно доквантовым законам механики и законам электрического взаимодействия электроны должны были потерять свою энергию и, двигаясь по спирали, упасть на ядро. Это означало, что атомы, да и все вещество, должны были быстро сколлапсировать до сверхплотного состояния. В 1913 году датский ученый Нильс Бор предложил частичное решение этой проблемы. Он предположил, что орбиты электронов не могут находиться на произвольном расстоянии от центрального ядра, а только на вполне определенном. Если же допустить, что на каждом из этих расстояний могут находиться орбиты не более двух электронов, то это решает проблему «схлопывания» атома: заполнив орбиты с наименьшими энергиями и расстояниями от ядра, электроны просто не могут подойти к ядру ближе.
Эта модель неплохо объясняла строение простейшего атома – атома водорода, в котором вокруг ядра обращается один-единственный электрон. Но было непонятно, как эту модель распространить на более сложные атомы. К тому же идея об ограниченном наборе допустимых орбит казалась очень уж произвольной. Новая теория квантовой механики справилась с этой трудностью. Эта теория показала, что обращающийся вокруг ядра электрон можно рассматривать как волну, длина которой зависит от его скорости. Длины некоторых орбит равны целому (а не дробному) числу длин волн электрона. У этих орбит после каждого оборота гребни оказываются на том же месте, и такие волны усиливаются. Эти орбиты соответствуют разрешенным орбитам Бора. А вот у орбит, длина которых не равна целому числу длин волн, каждый горб на каком-то обороте электрона окажется погашенным впадиной. Такие орбиты не являются допустимыми.
Американский физик Ричард Фейнман предложил наглядный способ представить корпускулярно-волновой дуализм путем так называемого суммирования по траекториям. Этот подход предполагает, что у частицы не одна-единственная траектория в пространстве-времени, как в случае классической, неквантовой теории. Вместо этого считается, что частица движется из точки А в точку В всеми возможными путями. Каждому пути из А в В Фейнман поставил в соответствие пару чисел – амплитуду, то есть размах волны, и фазу – положение волны в цикле (гребень или впадина). Вероятность для частицы попасть из А в В рассчитывается суммированием волн, соответствующих всем траекториям, ведущим из А в В. В общем случае фазы – то есть положения гребней и впадин волн – близких соседних траекторий сильно различаются. Это значит, что связанные с этими траекториями волны гасят друг друга. Но у некоторых наборов соседних траекторий различия фаз оказываются малыми, и соответствующие этим траекториям волны не гасят друг друга. Такие траектории соответствуют боровским допустимым орбитам.
На основе этих представлений, облеченных в конкретную математическую форму, оказалось довольно нетрудно рассчитать допустимые орбиты для более сложных атомов и даже молекул, состоящих из нескольких атомов, связанных электронами, которые обращаются сразу вокруг нескольких ядер. Поскольку строение молекул и их реакции лежат в основе всей химии и биологии, квантовая механика в принципе позволяет предсказать все происходящее вокруг нас в пределах, установленных принципом неопределенности. (Но на практике расчеты для систем с несколькими электронами оказываются настолько сложными, что не могут быть выполнены [аналитически].)
Общая теория относительности Эйнштейна определяет поведение Вселенной на больших масштабах. Это то, что можно назвать классической теорией, – она не учитывает квантовомеханический принцип неопределенности и поэтому не может быть согласована с другими теориями. Причина же согласия общей теории относительности с наблюдениями состоит в том, что все гравитационные поля, с которыми нам обычно приходится иметь дело, очень слабые. Однако согласно рассмотренным выше теоремам о сингулярностях как минимум в двух ситуациях – в черных дырах и во время Большого взрыва – гравитационное поле должно быть очень сильным. А в условиях таких сильных полей квантовые эффекты должны становиться существенными. Таким образом, в некотором смысле, предсказав существование точек с бесконечной плотностью, классическая общая теория относительности наметила собственный конец, совсем как классическая (то есть неквантовая) механика наметила свой конец через предсказанный ею вывод о неизбежности коллапса атомов до состояния с бесконечной плотностью. У нас пока еще нет полной и непротиворечивой теории, которая бы объединяла общую теорию относительности и квантовую механику, но мы уже знаем некоторые из свойств, которыми такая теория должна обладать. Мы рассмотрим следствия этих свойств для черных дыр и Большого взрыва в последующих главах. А пока вернемся к недавним попыткам объединить наши знания о других силах природы в единую квантовую теорию.
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.
В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.
В последние годы почти все публикации, посвященные Максиму Горькому, касаются политических аспектов его биографии. Некоторые решения, принятые писателем в последние годы его жизни: поддержка сталинской культурной политики или оправдание лагерей, которые он считал местом исправления для преступников, – радикальным образом повлияли на оценку его творчества. Для того чтобы понять причины неоднозначных решений, принятых писателем в конце жизни, необходимо еще раз рассмотреть его политическую биографию – от первых революционных кружков и участия в революции 1905 года до создания Каприйской школы.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.
У вас в руках сборник рейтовских лекций Стивена Хокинга о черных дырах, прочитанных на BBC Radio 4. Трудно вообразить, кто мог бы рассказать об одних из самых загадочных космических объектов интереснее и проще, чем человек, сделавший космологию популярной наукой и отдавший многие годы изучению связанных с черными дырами эффектов. Те вопросы, которые остались без ответа, растолковал Дэвид Шукман, научный редактор BBC. Рейтовские лекции, или лекции имени лорда Джона Рейта, первого генерального директора BBC, просветителя и популяризатора, – цикл научно-популярных записей.
Фестиваль науки Starmus впервые прошел в 2011 году, и с тех пор стало традицией участие в нем ведущих ученых, знаменитостей в области космонавтики и музыки, которых объединяет страсть к популяризации знания о Земле и космосе. Учредитель фестиваля и астрофизик Гарик Исраелян создал экспертный совет, в который вошли такие замечательные личности, как астрофизик и рок-музыкант Брайан Мэй, эволюционный биолог Ричард Докинз, первооткрыватель микроволнового излучения Роберт Вильсон, теоретический физик Стивен Хокинг, космонавт Алексей Леонов, химик и лауреат Нобелевской премии Харольд Крото и другие. В этой книге собраны лекции ученых, которые многие годы работали над тем, чтобы воссоздать прошлое вселенной и представить ее структуру.
Под этой обложкой – полный текст научно-популярного бестселлера. В главе, ранее не публиковавшейся на русском языке, автор рассуждает о возможности путешествий во времени. Текст сопровождают примечания и уточнения, сообщающие о достижениях современных космологов и астрономов.
Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.