Вселенная Стивена Хокинга - [21]

Шрифт
Интервал

В общем, квантовая механика не предсказывает единственного, определенного результата наблюдения. Вместо этого она делает прогноз в отношении целого набора возможных исходов и позволяет определить, насколько вероятен каждый из них. То есть в случае выполнения одного и того же измерения для большого количества похожих систем, стартующих с одинакового состояния, окажется, что результат будет в некоторых случаях иметь вид А, в других случаях – вид B, и т. д. Можно предсказать приблизительное число раз, когда исход эксперимента будет иметь вид А или B, но не конкретный результат конкретного эксперимента. Таким образом, квантовая механика неизбежно привносит в науку элемент непредсказуемости и случайности. Эйнштейн решительно возражал против такого подхода, несмотря на ту роль, которую сыграл в его появлении, – ведь ему была присуждена Нобелевская премия за вклад в квантовую теорию. Тем не менее он так и не смог примириться с тем, что Вселенная отдана на волю случая, и выразил свой протест крылатой фразой: «Бог не играет в кости». Но большинство ученых охотно приняли квантовую механику именно потому, что ее предсказания прекрасно согласуются с результатами экспериментов. И действительно, квантовая теория оказалась исключительно успешной и лежит в основе практически всей современной науки и техники. Она определяет поведение транзисторов и интегральных микросхем – важнейших деталей телевизоров и компьютеров – и является фундаментом современных химии и биологии. Единственные области физики, где квантовомеханический подход пока еще не реализован в должной мере, – это теория тяготения и теория крупномасштабной структуры Вселенной.

Хотя свет состоит из волн, квантовая гипотеза Планка предсказывает, что в некоторых отношениях он все же ведет себя так, как если бы состоял из частиц: свет может излучаться и поглощаться только дискретными порциями, или квантами. Точно так же из принципа неопределенности Гейзенберга следует, что частицы в некоторых отношениях ведут себя так же, как волны. Как мы уже видели, у них нет четкого положения, они «размазаны» в пространстве в соответствии с неким распределением вероятности. В основе квантовой механики лежит математический аппарат совершенно нового типа: он не описывает реальный мир как состоящий из объектов, которые можно однозначно отнести к частицам или волнам. В этих терминах описываются только наблюдения мира. Таким образом, в квантовой механике мы имеем дело с корпускулярно-волновым дуализмом: для некоторых задач бывает удобно рассматривать частицы как волны, для других – рассматривать волны как частицы. Одно из важных следствий такого подхода состоит в возможности наблюдения так называемой интерференции двух множеств волн или частиц. То есть гребни одного множества волн могут накладываться на впадины другого. В таком случае два множества волн ослабляют друг друга, а не суммируются, образуя более сильную волну, как можно было ожидать (рис. 4.1). Хорошо всем знакомым примером интерференции света могут служить мыльные пузыри. Явление это возникает при отражении света от двух стенок тонкой мыльной пленки, образующей пузырь. Белый свет состоит из волн разной длины, то есть волн разного цвета. Для волн некоторой длины гребни волн, отраженных от одной из стенок мыльной пленки, накладываются на впадины волн, отраженных от другой стенки пленки. Соответствующие этим длинам волн цвета отсутствуют в отраженном свете, который из-за этого воспринимается не как белый, а как окрашенный.


Рис. 4.1


Интерферировать могут и частицы – из-за обусловленного квантовой механикой волнового дуализма. Одним из наиболее известных примеров является так называемый двухщелевой эксперимент (рис. 4.2). Представьте себе перегородку – тонкую стенку – с двумя узкими параллельными щелями. С одной стороны от перегородки разместим источник света определенного цвета (то есть с определенной длиной волны). Большая часть света попадет в перегородку, но небольшое его количество пройдет через щели. Теперь представьте, что вы установили с другой стороны от перегородки экран. На любую точку этого экрана приходит свет из обеих щелей. Но в общем случае пути, которые свет проходит от источника до экрана через щели, отличаются друг от друга. Это означает, что волны, приходящие от двух щелей, окажутся не в фазе, когда они достигнут экрана. В некоторых местах впадины одной волны наложатся на гребни другой, и волны взаимно погасят друг друга, а в других местах гребни двух волн наложатся друг на друга, то же произойдет со впадинами, в результате чего волны усилят друг друга. Таким образом возникает характерный узор чередующихся светлых и темных полос.


Рис. 4.2


Удивительно, что точно такая же картина из полос наблюдается, если заменить источник света источником потока частиц, например электронов, движущихся с определенной скоростью. (Это означает, что соответствующие им волны имеют определенную длину.) Это особенно неожиданно, если учесть, что если в перегородке только одна щель, никаких полос не наблюдается – электроны равномерно распределяются по экрану. Логично предположить, что если сделать в перегородке вторую щель, то результатом будет простое увеличение числа электронов, попадающих в каждую точку на экране. Но из-за интерференции число электронов в некоторых местах, наоборот, уменьшается. Если отправлять электроны через щели по одному, то естественно было бы ожидать, что каждый электрон пройдет через одну из щелей и распределение электронов за перегородкой будет таким же, как если бы мы имели дело с прохождением электрона через единственную щель – то есть равномерное распределение на экране. Но в реальности интерференционная картина наблюдается, даже если электроны выпускать по одному. Таким образом, каждый электрон должен проходить одновременно через


Еще от автора Стивен Хокинг
Краткие ответы на большие вопросы

Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.


Черные дыры и молодые вселенные

Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.


Теория всего. Происхождение и судьба Вселенной

Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.


Джордж и тайны Вселенной

По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».


Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Джордж и сокровища Вселенной

И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.


Рекомендуем почитать
Дедюхино

В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.


Горький-политик

В последние годы почти все публикации, посвященные Максиму Горькому, касаются политических аспектов его биографии. Некоторые решения, принятые писателем в последние годы его жизни: поддержка сталинской культурной политики или оправдание лагерей, которые он считал местом исправления для преступников, – радикальным образом повлияли на оценку его творчества. Для того чтобы понять причины неоднозначных решений, принятых писателем в конце жизни, необходимо еще раз рассмотреть его политическую биографию – от первых революционных кружков и участия в революции 1905 года до создания Каприйской школы.


Школа штурмующих небо

Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.


Небо вокруг меня

Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.


На пути к звездам

Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.


Вацлав Гавел. Жизнь в истории

Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.


Черные дыры. Лекции BBC

У вас в руках сборник рейтовских лекций Стивена Хокинга о черных дырах, прочитанных на BBC Radio 4. Трудно вообразить, кто мог бы рассказать об одних из самых загадочных космических объектов интереснее и проще, чем человек, сделавший космологию популярной наукой и отдавший многие годы изучению связанных с черными дырами эффектов. Те вопросы, которые остались без ответа, растолковал Дэвид Шукман, научный редактор BBC. Рейтовские лекции, или лекции имени лорда Джона Рейта, первого генерального директора BBC, просветителя и популяризатора, – цикл научно-популярных записей.


Вселенная. Емкие ответы на непостижимые вопросы

Фестиваль науки Starmus впервые прошел в 2011 году, и с тех пор стало традицией участие в нем ведущих ученых, знаменитостей в области космонавтики и музыки, которых объединяет страсть к популяризации знания о Земле и космосе. Учредитель фестиваля и астрофизик Гарик Исраелян создал экспертный совет, в который вошли такие замечательные личности, как астрофизик и рок-музыкант Брайан Мэй, эволюционный биолог Ричард Докинз, первооткрыватель микроволнового излучения Роберт Вильсон, теоретический физик Стивен Хокинг, космонавт Алексей Леонов, химик и лауреат Нобелевской премии Харольд Крото и другие. В этой книге собраны лекции ученых, которые многие годы работали над тем, чтобы воссоздать прошлое вселенной и представить ее структуру.


Краткая история времени. От Большого взрыва до черных дыр

Под этой обложкой – полный текст научно-популярного бестселлера. В главе, ранее не публиковавшейся на русском языке, автор рассуждает о возможности путешествий во времени. Текст сопровождают примечания и уточнения, сообщающие о достижениях современных космологов и астрономов.


На плечах гигантов

Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.