Теория всего. Происхождение и судьба Вселенной

Теория всего. Происхождение и судьба Вселенной

Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.

Жанр: Физика
Серии: -
Всего страниц: 38
ISBN: -
Год издания: Не установлен
Формат: Фрагмент

Теория всего. Происхождение и судьба Вселенной читать онлайн бесплатно

Шрифт
Интервал


Введение

В этой серии лекций я попытаюсь вкратце обрисовать историю Вселенной, какой она нам представляется, от Большого Взрыва до черных дыр. Первая лекция содержит краткий обзор существовавших в прошлом представлений о строении мира и рассказ о том, как мы пришли к современной картине. Так что эту лекцию можно назвать хроникой теорий об истории Вселенной.

Вторая лекция объяснит, как теории гравитации Ньютона и Эйнштейна привели к заключению, что Вселенная не может быть стационарной — только расширяющейся, либо сжимающейся. Это, в свою очередь, предполагает, что в какое-то время в интервале от 10 до 20 млрд лет тому назад Вселенная имела бесконечную плотность. То был Большой Взрыв, который, по-видимому, стал «началом» существования Вселенной.

В третьей лекции я расскажу о черных дырах. Они формируются, когда массивная звезда или даже более крупное образование схлопывается под действием собственного тяготения. В соответствии с общей теорией относительности Эйнштейна субъекты, имевшие глупость угодить в черную дыру, будут потеряны навсегда. Они уже не смогут оттуда выбраться. В сингулярности черной дыры истории приходит конец. Впрочем, общая теория относительности — это теория классическая, не берущая в расчет принцип неопределенности квантовой механики.

А квантовая механика, как я покажу в четвертой лекции, допускает ускользание энергии из черных дыр. Черные дыры не так уж черны, как их малюют.

В пятой лекции я приложу идеи квантовой механики к Большому Взрыву и возникновению Вселенной. Это подведет нас к идее, что пространство-время может быть конечным по протяженности, но не иметь границы или края. Это было бы похоже на поверхность Земли, имеющую еще два дополнительных измерения. В шестой лекции я растолкую, как это новое предположение о границах способно объяснить разительное отличие прошлого от будущего при том, что законы физики симметричны относительно времени.

Наконец, в седьмой лекции я обращусь к нашим попыткам найти некую объединенную теорию, охватывающую квантовую механику, тяготение и все остальные физические взаимодействия. Если бы мы преуспели в этом, то смогли бы понять Вселенную и наше место в ней.

Первая лекция. Представления о Вселенной

Еще в 340 г. до н. э. Аристотель в сочинении «О небе» сформулировал два веских довода в пользу того, что Земля скорее круглая, как шар, нежели плоская, как тарелка. Во-первых, он осознал, что лунные затмения возникают из-за прохождения Земли между Солнцем и Луной. Тень Земли на Луне всегда круглая, а подобное возможно, только если Земля имеет сферическую форму. Будь наша планета плоским диском, тень ее была бы вытянутой, эллиптической, за исключением тех случаев, когда в момент затмения Солнце располагается прямо над центром диска.

Во-вторых, из опыта путешествий древние греки вынесли, что в южных странах Полярная звезда стоит ниже над горизонтом, чем в тех, что лежат ближе к северу. Из разницы видимых положений Полярной звезды в Греции и Египте Аристотель даже вывел приближенное значение окружности Земли — около 400 тыс. стадиев. Мы не знаем точно, чему равнялся древнегреческий стадий. Возможно, он составлял около 180 м. Тогда оценка Аристотеля примерно вдвое превосходит принятое ныне значение.

У древних греков имелся и третий аргумент в пользу шарообразности Земли: почему бы еще наблюдатель на берегу сначала замечал над горизонтом парус приближающегося корабля, а лишь затем — его корпус? Аристотель полагал, что Земля неподвижна, а Солнце, Луна, планеты и звезды

движутся вокруг нее по круговым орбитам. Он считал так, поскольку в силу мистических соображений был убежден, что Земля — центр Вселенной, а круговое движение — самое совершенное.

ВI в. н. э. Птолемей развил эти идеи в целостную космологическую модель. Земля располагалась в центре, окруженная восемью сферами, несущими на себе Луну, Солнце, звезды и пять известных в то время планет (Меркурий, Венеру, Марс, Юпитер и Сатурн). Планеты перемещались по малым окружностям, закрепленным на соответствующих сферах, что требовалось для объяснения их весьма сложных наблюдаемых движений по небосклону. На внешней сфере размещались так называемые неподвижные звезды, которые всегда остаются в одинаковом положении относительно друг друга, но все вместе совершают круговое движение по небу. Что лежит за пределами внешней сферы, оставалось неясным, эта область Вселенной не была доступна для наблюдений.

Модель Птолемея позволяла с достаточной точностью предсказывать видимые положения небесных тел. Но для этого пришлось допустить, что Луна, двигаясь по своей траектории, в отдельные моменты подходит к Земле вдвое ближе, чем в другие. А это означало, что периодически Луна должна казаться вдвое больше обычного. Птолемей знал об этом недостатке, тем не менее его модель была принята если не всеми, то абсолютным большинством. Она была одобрена христианской церковью, как картина мира, согласующаяся со Священным Писанием. Большим преимуществом в глазах богословов было то, что эта модель оставляла за пределами сферы неподвижных звезд достаточно места для рая и ада.


Еще от автора Стивен Хокинг
Черные дыры и молодые вселенные

Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.


Краткие ответы на большие вопросы

Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.


Джордж и тайны Вселенной

По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».


Джордж и код, который не взломать

«Джордж и код, который не взломать» – четвертая книга о приключениях Джорджа в космосе, написанная астрофизиком, гениальным пропагандистом науки Стивеном Хокингом и его дочерью, научным журналистом Люси Хокинг. Эта космическая эпопея стала сверхпопулярной среди детей от 7 до 12 лет по всему миру не только благодаря головокружительному и остроумному сюжету, сколько из-за того, как там излагается научная информация. Основные понятия и законы физики и самые последние новости из области космических исследований, точные, понятные формулировки и вдохновляющие статьи ученых, которые прямо сейчас – в обсерваториях или в ЦЕРНе – занимаются актуальными исследованиями.


Джордж и сокровища Вселенной

И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.


Моя краткая история

Искренне и человечно написанная книга, в которой Стивен Хокинг, один из самых блестящих ученых нашего времени, откровенно рассказывает об основных вехах своей такой неординарной жизни и о тех исследовательских проблемах, в сфере которых он сделал поистине великие открытия.


Рекомендуем почитать
Ребенок по Монтессори ест все подряд и не кусается

В основе педагогической системы Монтессори лежит принцип недопустимости насилия над ребенком. Ребенок – целостная активная личность с чрезвычайно интенсивной мотивацией к саморазвитию. Задача родителей заключается в том, чтобы подготовить развивающую среду и наблюдать за самостоятельной работой ребенка, предлагая свою помощь лишь тогда, когда это необходимо.Дети, воспитанные по системе Монтессори: самостоятельны, аккуратны, ответственны, умеют ставить цели и принимать решения, понятливы, доискиваются до сути, а главное – умеют и хотят быть свободными!


Семь шагов до сказки: творческий способ решения проблем

В книге «Семь шагов до сказки» Люмара, профессиональный психолог, представляет авторскую методику написания терапевтических «самосбывающихся» сказок.Читателю предлагается создать сказочного героя, придумать для него достойную цель, определить препятствия на его пути и способы их преодоления. Проецируя на «героя» собственные жизненные трудности, читатель получает возможность не только лучше понять себя, но и найти новые, неожиданные решения волнующих его проблем.Книга рассчитана на любой возраст и уровень творческого потенциала читателей.


Имя игры - смерть

Классический детектив в стиле американского нуара, основными персонажами которых являются представители преступного мира — грабители банков, медвежатники, профессиональные убийцы. Главный герой повести «Имя игры — смерть» — прирождённый преступник, но на этот путь его толкнуло обострённое чувство справедливости которое очень скоро вступило в конфликт с миром продажного закона и коррумпированной полиции.


Заложница любви

От руки вероломных убийц погибают отец и мать юной леди Бронуин, которую правитель Уэльса собирался отдать в жены английскому рыцарю. Девушке приходится скрывать свое происхождение и выдавать себя за мужчину, чтобы отомстить за смерть родителей.Удастся ли красавице Бронуин утолить пробудившуюся в ее сердце страсть в объятиях сурового рыцаря, которого она прежде так люто ненавидела?Сумеет ли закаленный в сражениях воин завоевать сердце юной женщины, считавшей его своим врагом?


Астероидно-кометная опасность: вчера, сегодня, завтра

Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.Книга рассчитана на широкий круг читателей.


Жизнь в невозможном мире: Краткий курс физики для лириков

Доказала ли наука отсутствие Творца или, напротив, само ее существование свидетельствует о разумности устройства мироздания? Является ли наш разум случайностью или он — отражение того Разума, что правит Вселенной? Объективна ли красота? Существует ли наряду с миром явлений мир идей? Эти и многие другие вопросы обсуждает в своей книге известный физик-теоретик, работающий в Соединенных Штатах Америки.Научно-мировоззренческие эссе перемежаются в книге с личными воспоминаниями автора.Для широкого круга читателей.Современная наука вплотную подошла к пределу способностей человеческого мозга, и когнитивная пропасть между миром ученого и обществом мало когда была столь широка.


Наблюдения и озарения, или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой.


Коллайдер

Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.


Радиация. Дозы, эффекты, риск

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Физика и философия

Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932). Умер в 1976 году от рака.