Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [170]
«Хорошие» значения энергии, при которых атом все-таки существует, тоже можно организовать в список и заодно пронумеровать числами 1, 2, 3, …. Значения энергии из этого списка для данного атома абсолютно одинаковы везде во Вселенной; если инопланетяне сообщат вам, чему равна наименьшая возможная энергия электрона в атоме водорода, выраженная в и. е.э., вы будете точно знать, чему равна эта «инопланетная единица энергии». Наименьшую возможную энергию мы всегда помещаем в список под номером 1, а далее располагаем значения энергии в порядке возрастания; это не обязательно, но удобно настолько, что нет причин сомневаться, что инопланетяне тоже так делают.
Этот список разрешенных энергий – фундаментальное свойство атома. И что немаловажно, его (список!) можно наблюдать почти непосредственно. Он виден – я бы сказал, проступает – в свойствах света, который излучается или поглощается атомами. Если электрон устроился вблизи притягивающего ядра, имея первую энергию из списка, мы можем заставить его устроиться по-другому, передав ему энергию, в точности равную разнице между первой и, скажем, десятой энергиями. Способ передачи энергии – свет: нужно отправить на свидание с электроном порцию света – фотон – с точно заданной энергией. Внезапно отдельные куски пазла начинают собираться: поскольку энергия фотона есть произведение h · (частота), все, что требуется, – это отправить свет определенной частоты (или, что то же самое, определенной длины волны), т. е. свет определенного цвета. Электрон поглотит его, сам фотон исчезнет, но энергия его никуда не денется, а останется у электрона, который и устроится в состоянии номер десять. При этом свет близкой, но отличающейся длины волны, несущий чуть другую энергию, не сможет отдать эту энергию электрону, потому что у того нет способа существования в атоме с неподходящей энергией (а забрать энергию фотона можно только целиком: фотон не делится на части!). Мы этим пользуемся: путешествуя от источника к детектору и встречая по пути достаточно разреженное вещество, свет зацепляется за него, но только в той своей части, которая имеет подходящую длину волны. В результате в спектре – разложении приходящего света по длинам волн – образуются затемнения, означающие, что свет с некоторыми длинами волн до детектора не доходит. Положение этих линий поглощения точно свидетельствует об атомах, встреченных светом по дороге. В других условиях, когда вещество само излучает свет, на тех же длинах волн могут наблюдаться яркие линии: электрон, по каким-то причинам забравшийся в состояние с шестой или десятой энергией, расстается с ней, испуская фотон, а сам попадает с состояние с меньшей энергией. Разница между двумя энергиями из списка становится энергией фотона, и мы в результате наблюдаем свет со вполне определенной длиной волны[210].
Рис. 10.7.Сверху: иллюстрация к задаче «Продолжите последовательность 656,279; 486,135; 434,0472 и 410,1734» – спектральные линии водорода в видимой области спектра. Указаны длины волн в нанометрах. Снизу: спектральные линии гелия. Этот элемент был сначала открыт на Солнце по своим спектральным линиям
В длинах волн, отвечающих спектральным линиям, скрыты целые числа. В очередной раз стоя на плечах гигантов, мы теперь знаем, что эти числа представляют собой просто номера из списка разрешенных энергий, но в момент их открытия – за 40 лет до появления уравнения Шрёдингера, до открытия закона излучения Планка и даже до открытия электрона (!) – они представлялись совершенно загадочными. В 1885 г. их усмотрел в спектре атома водорода швейцарский преподаватель математики Бальмер. Перед его глазами было всего четыре лежащие в видимой части спектра линии с длинами волн 656,279 нм, 486,135 нм, 434,0472 нм и 410,1734 нм (рис. 10.7 слева). Сделав прямо сейчас паузу в прогулке, вооружившись калькулятором и отводя глаза от следующего абзаца, вы можете попробовать самостоятельно найти, какие целые числа скрываются внутри этой последовательности и как поэтому ее следует продолжить. Задача не решается мгновенно, даже когда вопрос поставлен напрямую о целых числах. У Бальмера же не просто не было калькулятора; вообще ничто не предвещало появления здесь целых чисел, так что открытие их в наборе произвольных с виду длин волн кажется мне каким-то особым видом наблюдательности и выдающимся примером эмпирически найденной, но при этом точной закономерности. Эти линии называются с тех пор серией Бальмера. Разгадав тайну длин волн, Бальмер продолжил последовательность и предсказал следующую линию с длиной волны 397 нм; как он вскоре узнал, ее, именно такую, уже наблюдал Ангстрём. Это было блестящим подтверждением догадки Бальмера!
Догадка же состояла вот в чем. Первую длину волны в его серии умножим на 1/2>2 – 1/3>2 (что можно, конечно, вычислить, приведя к общему знаменателю, но именно этого делать не следует, потому что сейчас важно не численное значение, а структура выражения; и я выделил число 3); вторую длину волны в серии умножим на 1/2
Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.
С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.
Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.
Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.
«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.