Восемь этюдов о бесконечности. Математическое приключение - [51]
Из этого упражнения, в частности, следует, что бесконечное множество может заполнить бесконечную гостиницу. Ключевое слово тут – «может».
Например, множество чисел, делящихся на 3, можно разместить в бесконечной гостинице так, что эти числа не займут все номера: нужно просто поселить каждое число в номере, соответствующем его значению.
Остается бесконечное количество свободных номеров.
Но если каждое число, делящееся на 3, поселить в номере, соответствующем одной трети его значения, гостиница окажется полностью заселенной.
Это показывает нам, что множество чисел, делящихся на 3, – множество счетно-бесконечное (потому что, как можно видеть из таблицы, существует биекция между ним и множеством натуральных чисел).
Множество чисел, кратных гуголплексу, также бесконечно и также счетно, как и множество чисел, кратных пухплексу. Попытайтесь представить себе, какое огромное количество чисел придется пройти, прежде чем мы доберемся до пухплекса! После этого нужно будет пройти еще столько же, чтобы достигнуть удвоенного пухплекса! Тем не менее мощность множества чисел, кратных пухплексу, равна мощности множества чисел, кратных 21, а также мощности множества четных чисел и множества натуральных чисел.
Мощность всех этих множеств – ℵ>0.
Хотите – верьте, хотите – нет!
Наши бледные рассуждения скрывают от нас бесконечное.
Джим Моррисон, The Doors
Каникулы алгебраических чисел в отеле Гильберта
Наша экспедиция в гостиницу Гильберта показала, что не всякое множество может в ней разместиться, хотя гостиница и бесконечна. Количество элементов множества всех чисел, заключенных между 0 и 1, оказалось слишком большим, чтобы все они смогли поселиться в гостинице.
Множество этих чисел несчетно-бесконечно, так как между ним и множеством натуральных чисел нет одно-однозначного и сюръективного соответствия. Существуют ли другие множества чисел, бесконечные, но несчетные, то есть такие множества, которые невозможно разместить в бесконечной гостинице?
Интересный пример множества этого типа дает множество неалгебраических чисел, которые мы сейчас определим. Но сначала проясним, что такое алгебраическое число.
Вспомним, что рациональное число – это число q, которое может быть записано в виде отношения двух целых чисел
Можно дать другое, эквивалентное определение: число q – рациональное число тогда, и только тогда, когда оно является решением уравнения «первой степени», а именно уравнения вида
где коэффициенты a и b – целые числа.
Ясно, что любое рациональное число
удовлетворяет равенству
и, следовательно, является решением уравнения первой степени
Например, число
является решением уравнения
Что же такое тогда алгебраическое число?
Число считается алгебраическим, если оно является корнем (то есть решением) уравнения вида:
,
где все коэффициенты a>k – целые числа.
Число, не являющееся алгебраическим, называют «трансцендентным числом».
Левая часть приведенного выше уравнения называется многочленом (или полиномом) n-й степени, если n не равно 0.
Из этого определения немедленно следует, что все рациональные числа относятся к числам алгебраическим. Однако есть и иррациональные алгебраические числа{30}. Вот несколько примеров:
√2 – алгебраическое число, так как является решением уравнения x² − 2 = 0.
Кубический корень из
– алгебраическое число, так как является решением уравнения
– алгебраическое число (но не вещественное число), так как является решением уравнения x² + 1 = 0.
Золотое сечение ϕ – алгебраическое число, так как является решением уравнения x² − x − 1 = 0.
Короче говоря, алгебраические числа «многочисленны», потому что «многочисленны» уравнения с многочленами вида
С учетом этого следующее утверждение может показаться несколько удивительным:
Множество алгебраических чисел счетно.
Доказательство. Рассмотрим уравнение
Предположим, что a>n – положительное число. Если это не так, мы можем умножить все уравнение на (–1); получившееся уравнение будет иметь те же корни.
Подобно тому, как мы разбирались с расселением рациональных чисел в гостинице, определим для каждого многочлена «высоту» Н.
Символ |m| обозначает абсолютное значение (или модуль) числа. Если число положительно, его абсолютное значение равно ему самому: | 37 | = 37. Если число отрицательно, абсолютное значение становится положительным: |–234 | = 234.
Теперь мы можем выписать все уравнения (некоторые из которых не имеют решений) в порядке возрастания высоты.
Например, для Н = 1 существует всего один многочлен, и он представляет собой просто 1, то есть не зависит от х, и дает уравнение 1 = 0, не имеющее решений. Это уравнение не имеет смысла и не дает нам никаких алгебраических чисел.
Для Н = 2 мы получаем два уравнения: х = 0 и 2 = 0. Первое дает алгебраическое число 0, а второе снова оказывается бессмысленным и не имеет корней.
Для Н = 3 получаются следующие уравнения: 3 = 0, х – 1 = 0, 2х = 0, х + 1 = 0, и наконец, х² = 0. Первое из этих уравнений не дает алгебраических чисел, а из остальных мы получаем два новых алгебраических числа: 1 и –1.
Я надеюсь, что основная идея понятна.
Дойдя до
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Наполеон притягивает и отталкивает, завораживает и вызывает неприятие, но никого не оставляет равнодушным. В 2019 году исполнилось 250 лет со дня рождения Наполеона Бонапарта, и его имя, уже при жизни превратившееся в легенду, стало не просто мифом, но национальным, точнее, интернациональным брендом, фирменным знаком. В свое время знаменитый писатель и поэт Виктор Гюго, отец которого был наполеоновским генералом, писал, что французы продолжают то показывать, то прятать Наполеона, не в силах прийти к окончательному мнению, и эти слова не потеряли своей актуальности и сегодня.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.