Восемь этюдов о бесконечности. Математическое приключение - [50]

Шрифт
Интервал

Головоломка: Paradiso e inferno

Некто осужден на вечные муки в аду. Другой человек проводит вечность в раю. На один день в году они меняются местами: несчастному грешнику позволяют насладиться восхитительной райской прохладой, а радостный обитатель рая пробует на вкус ужасы ада.

Рассуждая с точки зрения математики (то есть расчета кардинальных чисел), есть ли различия в том, как эти двое существуют после смерти?

Если вы считаете, что разница есть, объясните почему.

Если вы считаете, что разницы нет, ответьте на следующий вопрос: где предпочли бы провести вечность вы сами?

Парадокс Галилея – больше не парадокс; он попросту превратился в доказательство бесконечной природы натуральных чисел. Разумеется, можно найти много других подмножеств, равномощных множеству натуральных чисел (то есть имеющих такое же кардинальное число): множество простых чисел, множество четных чисел, множество натуральных чисел, делящихся на 101, множество чисел, точно равных факториалам, – {1, 2, 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800…} – и так далее.

Мощность бесконечных множеств

Возьмем множество D = {1, 2, 3, 4, 5}. Оно по определению не бесконечно.

Почему? Потому что, если взять из него некое собственное подмножество Е, мы не сможем найти между этими двумя множествами соответствия, которое было бы и одно-однозначным, и сюръективным. Другими словами, мы не сможем разбить все разные элементы множества D и разбить все разные элементы множества на пары.

Как уже было сказано выше, мощность конечного множества попросту равна числу содержащихся в нем элементов. Следовательно, можно написать #A = n.

Но как определить мощность бесконечных множеств? Не можем же мы подсчитать элементы, содержащиеся в бесконечных множествах!

Есть ли вообще мощность у бесконечных множеств?

А если есть, то существуют ли некие мощности бесконечных множеств, большие, чем другие (посещение бесконечной гостиницы дает более чем достаточно оснований предположить, что такое может быть возможно)?

Существует ли «наименьшая» плотность бесконечного множества?

Существует ли «наибольшая» плотность бесконечного множества? «Бесконечна» ли плотность бесконечного множества? Если это так, как нам определить значение такой мощности?

Если вы хотите узнать ответы на эти и другие вопросы, оставайтесь с нами!

В отель Гильберта приезжают счетно-бесконечные множества


Любое конечное множество, очевидно, есть множество счетное. Если начать с первого элемента, перейти к следующему и так далее, то рано или поздно (даже если это множество содержит гуголплекс элементов) вы (или ваши потомки) дойдете до последнего элемента. Бесконечное множество называют «счетно-бесконечным», если оно имеет такую же мощность, как множество натуральных чисел, то есть для него существует одно-однозначное и сюръективное соответствие с множеством натуральных чисел. Другими словами, его элементы можно расположить последовательно, из чего следует, что его элементы можно каким-то образом разместить в отеле Гильберта. Они счетны в том смысле, что мы можем расположить их так, чтобы у нас был первый элемент, затем второй, за ним – третий… и, хотя этот процесс никогда не завершится, мы все же пересчитываем эти элементы! Поэтому такие множества и называются «счетными».

Мы уже видели, что множество целых чисел и множество рациональных чисел можно расселить в бесконечной гостинице Гильберта без каких-либо затруднений. Это означает, что эти два множества, несомненно, относятся к множествам счетным.

Напомню, как именно размещались в гостинице рациональные числа. Как вы помните, мы расположили их в порядке возрастания «высоты», причем «высота» дроби a/b была определена равной h = a + b, а числа с одинаковой высотой располагались в порядке возрастания значения числителя (см. приведенную ниже таблицу). Вполне ясно, что у этих дробей, расположенных в таком порядке, есть инъективное соответствие с натуральными числами.



Давид Гильберт


Эмми Нётер


А вот напоминание о том, как можно разместить в самой шикарной математической гостинице во Вселенной целые числа:



Выше мы обозначили мощность конечного множества символом #A. Однако, поскольку завершить подсчет элементов бесконечного множества невозможно, для его мощности не может существовать никакого значения «n». Следовательно, мощность счетно-бесконечного множества необходимо определить как-то иначе. Кантор обозначил ее символом ℵ>0 (алеф-нуль). Он состоит из буквы «алеф», взятой из еврейского алфавита, с подстрочным индексом 0{29}. Если обозначить буквой N множество натуральных чисел, а буквой Z – множество целых чисел (как положительных, так и отрицательных, а также нуля), то для обоих этих множеств можно написать, что #N = ℵ>0 и #Z = ℵ>0.

Тот факт, что мощность счетно-бесконечного множества обозначается ℵ>0, намекает, что ℵ>0 – вероятно, наименьшая мощность бесконечного множества и что могут существовать и более высокие мощности бесконечных множеств (элементы которых мы все равно не можем пересчитать!). На самом деле так оно и есть.

Мини-головоломка

Докажите, что любое бесконечное множество содержит счетно-бесконечное множество.


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Наполеон Бонапарт: между историей и легендой

Наполеон притягивает и отталкивает, завораживает и вызывает неприятие, но никого не оставляет равнодушным. В 2019 году исполнилось 250 лет со дня рождения Наполеона Бонапарта, и его имя, уже при жизни превратившееся в легенду, стало не просто мифом, но национальным, точнее, интернациональным брендом, фирменным знаком. В свое время знаменитый писатель и поэт Виктор Гюго, отец которого был наполеоновским генералом, писал, что французы продолжают то показывать, то прятать Наполеона, не в силах прийти к окончательному мнению, и эти слова не потеряли своей актуальности и сегодня.


Император Алексей Ι Комнин и его стратегия

Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.