Восемь этюдов о бесконечности. Математическое приключение - [50]

Шрифт
Интервал

Головоломка: Paradiso e inferno

Некто осужден на вечные муки в аду. Другой человек проводит вечность в раю. На один день в году они меняются местами: несчастному грешнику позволяют насладиться восхитительной райской прохладой, а радостный обитатель рая пробует на вкус ужасы ада.

Рассуждая с точки зрения математики (то есть расчета кардинальных чисел), есть ли различия в том, как эти двое существуют после смерти?

Если вы считаете, что разница есть, объясните почему.

Если вы считаете, что разницы нет, ответьте на следующий вопрос: где предпочли бы провести вечность вы сами?

Парадокс Галилея – больше не парадокс; он попросту превратился в доказательство бесконечной природы натуральных чисел. Разумеется, можно найти много других подмножеств, равномощных множеству натуральных чисел (то есть имеющих такое же кардинальное число): множество простых чисел, множество четных чисел, множество натуральных чисел, делящихся на 101, множество чисел, точно равных факториалам, – {1, 2, 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800…} – и так далее.

Мощность бесконечных множеств

Возьмем множество D = {1, 2, 3, 4, 5}. Оно по определению не бесконечно.

Почему? Потому что, если взять из него некое собственное подмножество Е, мы не сможем найти между этими двумя множествами соответствия, которое было бы и одно-однозначным, и сюръективным. Другими словами, мы не сможем разбить все разные элементы множества D и разбить все разные элементы множества на пары.

Как уже было сказано выше, мощность конечного множества попросту равна числу содержащихся в нем элементов. Следовательно, можно написать #A = n.

Но как определить мощность бесконечных множеств? Не можем же мы подсчитать элементы, содержащиеся в бесконечных множествах!

Есть ли вообще мощность у бесконечных множеств?

А если есть, то существуют ли некие мощности бесконечных множеств, большие, чем другие (посещение бесконечной гостиницы дает более чем достаточно оснований предположить, что такое может быть возможно)?

Существует ли «наименьшая» плотность бесконечного множества?

Существует ли «наибольшая» плотность бесконечного множества? «Бесконечна» ли плотность бесконечного множества? Если это так, как нам определить значение такой мощности?

Если вы хотите узнать ответы на эти и другие вопросы, оставайтесь с нами!

В отель Гильберта приезжают счетно-бесконечные множества


Любое конечное множество, очевидно, есть множество счетное. Если начать с первого элемента, перейти к следующему и так далее, то рано или поздно (даже если это множество содержит гуголплекс элементов) вы (или ваши потомки) дойдете до последнего элемента. Бесконечное множество называют «счетно-бесконечным», если оно имеет такую же мощность, как множество натуральных чисел, то есть для него существует одно-однозначное и сюръективное соответствие с множеством натуральных чисел. Другими словами, его элементы можно расположить последовательно, из чего следует, что его элементы можно каким-то образом разместить в отеле Гильберта. Они счетны в том смысле, что мы можем расположить их так, чтобы у нас был первый элемент, затем второй, за ним – третий… и, хотя этот процесс никогда не завершится, мы все же пересчитываем эти элементы! Поэтому такие множества и называются «счетными».

Мы уже видели, что множество целых чисел и множество рациональных чисел можно расселить в бесконечной гостинице Гильберта без каких-либо затруднений. Это означает, что эти два множества, несомненно, относятся к множествам счетным.

Напомню, как именно размещались в гостинице рациональные числа. Как вы помните, мы расположили их в порядке возрастания «высоты», причем «высота» дроби a/b была определена равной h = a + b, а числа с одинаковой высотой располагались в порядке возрастания значения числителя (см. приведенную ниже таблицу). Вполне ясно, что у этих дробей, расположенных в таком порядке, есть инъективное соответствие с натуральными числами.



Давид Гильберт


Эмми Нётер


А вот напоминание о том, как можно разместить в самой шикарной математической гостинице во Вселенной целые числа:



Выше мы обозначили мощность конечного множества символом #A. Однако, поскольку завершить подсчет элементов бесконечного множества невозможно, для его мощности не может существовать никакого значения «n». Следовательно, мощность счетно-бесконечного множества необходимо определить как-то иначе. Кантор обозначил ее символом ℵ>0 (алеф-нуль). Он состоит из буквы «алеф», взятой из еврейского алфавита, с подстрочным индексом 0{29}. Если обозначить буквой N множество натуральных чисел, а буквой Z – множество целых чисел (как положительных, так и отрицательных, а также нуля), то для обоих этих множеств можно написать, что #N = ℵ>0 и #Z = ℵ>0.

Тот факт, что мощность счетно-бесконечного множества обозначается ℵ>0, намекает, что ℵ>0 – вероятно, наименьшая мощность бесконечного множества и что могут существовать и более высокие мощности бесконечных множеств (элементы которых мы все равно не можем пересчитать!). На самом деле так оно и есть.

Мини-головоломка

Докажите, что любое бесконечное множество содержит счетно-бесконечное множество.


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
В тайниках тела (Приключения в микромире. Том VI)

В тайниках тела (Приключения в микромире. Том VI). — Б.м.: Salamandra P.V.V., 2014. - 155 c., илл. — (Polaris: Путешествия, приключения, фантастика. Вып. LХI). Гигантские пауки и крошечные люди, кровопролитные битвы муравьев, отчаянные сражения микробов, путешествия внутри человеческого тела и невообразимые вселенные, заключенные в атомах — проникновение в микромир издавна было заветной мечтой фантастов. Публикацию забытых и редких произведений, объединенных общей темой «приключений в микромире», продолжает в серии «Polaris» познавательная книга Г.


Диагностика и лечение клещевого энцефалита в Белоруссии

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Старинные образы южных славян

В этой книге говорится об Исконной Вере и Стари у Южных Славян. Исследование, которое мы провели, не основывается на песнях, преданиях и обрядах, сохранившихся до сих пор, ни даже на письменных летописях. Главная особенность научного подхода, примененного в этой книге, это его опора на образные представления, которые у Южных Славян, совместно со многими другими народами, возникли со временем.


Космическая мифология

«Древние люди летали в космос!», «Гагарин не был первым космонавтом!», «Американцы сфальсифицировали высадку на Луну!», «Космонавты встречали инопланетян и ангелов!». Подобные заголовки часто встречаются в прессе. В них не было бы большой беды, если бы из-за порождаемых мифов не формировалось конспирологическое мировоззрение, отрицающее историю космонавтики и достижения науки. Космическую мифологию легко опровергнуть фактами, но чтобы добраться до них, нужны знания и опыт. Книга Антона Первушина, писателя и научного журналиста, поможет сориентироваться в потоках информации и научиться отделять правду от вымысла.


Консервативная революция в германии 1918-1932

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Знак вопроса, 1994 № 01-02

Всю жизнь мы видим сны: впервые они являются нам в утробе матери и не покидают до смертного часа. Но что же такое — сон? Нужен ли человеку этот «бесценный дар Морфея»? Можно ли считать сном гипноз? Почему во сне вспоминается забытое, казалось бы, навсегда? Есть ли связь между сном и памятью? Ответы на эти вопросы вы найдете в работе, посвященной этим еще не до конца изученным проблемам, связанным с деятельностью мозга.* * * Подписная серия «Знак вопроса» издательства «Знание» выпускалась ежемесячно, начиная с 1989 года.