Восемь этюдов о бесконечности. Математическое приключение - [49]

Шрифт
Интервал



Вот еще один пример:



В нем также имеются одно-однозначное и сюръективное соответствие, и нам даже не пришлось привлекать футболистов или манекенщиц.

Теперь, прояснив все эти вопросы, вернемся к бесконечным множествам. Исходя из изложенного выше, кажется естественным дать следующее определение равенства количества элементов двух множеств (будь то конечных или бесконечных):

ОПРЕДЕЛЕНИЕ РАВНОМОЩНОСТИ

Два множества А и В имеют равную мощность, если между элементами множества А и элементами множества В существует некоторое (любое) соответствие, одновременно одно-однозначное (инъективное) и сюръективное.

Что же это за «мощность»? Возможно, вы помните, что мы уже упоминали ее некоторое время назад. Смысл мощности конечных множеств вполне ясен.

ОПРЕДЕЛЕНИЕ МОЩНОСТИ КОНЕЧНЫХ МНОЖЕСТВ

В случае конечных множеств мощность – это просто вычурное обозначение «количества элементов множества». Например, множество A = {17, 42, 1729, 1 234 321} содержит четыре элемента; следовательно, его мощность (которую называют также кардинальным числом) равна 4. Это утверждение можно записать следующим образом: #A = 4[47].

Однако в случае бесконечных множеств понятие «количества элементов множества» не очевидно и не может быть очевидно. Когда речь идет о бесконечных множествах, мы можем только сравнивать их мощности.

Парадокс Галилео Галилея

В начале XVII в. Галилео Галилей описал парадокс, который был назван его именем. В парадоксе Галилея речь идет об одно-однозначном и сюръективном соответствиях между множеством натуральных чисел {1, 2, 3, 4…} и множеством полных квадратов {1, 2, 4, 9, 16…}. Из элементов этих множеств можно составить пары, как показано в приведенной ниже таблице. Должно быть очевидно, что для каждого элемента множества А существует один, и только один, соответствующий ему элемент множества В, и наоборот:



Возникающий здесь парадокс состоит в том, что множество натуральных чисел и его собственное подмножество – то есть подмножество, не равное самому этому множеству[48], в данном случае множество полных квадратов, – имеют одинаковую мощность (то есть между ними существует одно-однозначное и сюръективное соответствие). Как такое может быть, если натуральных чисел больше, чем квадратов, то есть в одном множестве должно быть больше элементов, чем в другом? Как же они могут быть равномощными?!


Георг Кантор

© Morphart Creation / Shutterstock.com


Галилео Галилей

© Morphart Creation / Shutterstock.com


ОПРЕДЕЛЕНИЕ ПАРАДОКСА

Положение или предположение, противоречащее общепринятому мнению; утверждение или ощущение, кажущееся противоречивым или идущим вразрез со здравым смыслом; нечто выглядящее или представленное абсурдным, но могущее быть истинным.

Как замечательно, что мы столкнулись с парадоксом! Теперь у нас есть надежда чего-нибудь добиться.

Нильс Бор

Как я согласен с Нильсом Бором! Парадоксы прекрасно помогают как следует встряхнуть процесс размышлений.

Галилей считал, что этот парадокс, о котором он писал в «Беседах о двух новых науках» (Discorsi e dimostrazioni matematiche intorno a due nuovi scienze attenenti alla mecanica e i movimenti locali, 1638), доказывает, что в разговоре о бесконечных множествах нельзя использовать прилагательные вроде «равный», «больший» или «меньший»; более того, как мы уже упоминали гораздо раньше в этой книге, существам с конечным разумом вообще лучше держаться подальше от всего того, что касается бесконечности.

Но что из того, что наш разум конечен? Почему это должно приковывать нас к одним лишь размышлениям о конечном? Кантор и Дедекинд попытались взять это кажущееся затруднение и превратить его в основание новой теории.

ОПРЕДЕЛЕНИЕ ПОДМНОЖЕСТВА

Множество А можно назвать подмножеством множества В, если все элементы множества А являются элементами В.

Например:

A = {Густав Малер, Густав Холст, Густаво Дудамель}.

B = {Густав Малер, Густав Климт, Густав Холст, Густаво Дудамель, Гюстав Доре, Густаво Бокколи, Гюстав Курбе, ураган «Густав», Густав V Шведский}.

Множество А является подмножеством множества В, потому что все элементы множества А содержатся и в В. Из этого определения также следует, что любое множество является подмножеством самого себя.

Вернемся к рассмотрению парадокса Галилея. Но сначала нам нужно запомнить еще пару определений. Итак:

ОПРЕДЕЛЕНИЕ СОБСТВЕННОГО ПОДМНОЖЕСТВА

Если множество А – подмножество множества В, но не равно множеству В[49], говорят, что А – собственное подмножество В. В предыдущем примере множество А является собственным подмножеством множества В.

ОПРЕДЕЛЕНИЕ БЕСКОНЕЧНЫХ МНОЖЕСТВ КАНТОРА – ДЕДЕКИНДА

Множество называют бесконечным, если между ним и по меньшей мере одним из его собственных подмножеств есть как одно-однозначное (инъективное), так и сюръективное соответствие. Напомню кстати, что в случае конечных множеств собственное подмножество А не может иметь одно-однозначного соответствия с А!

Например, множество натуральных чисел бесконечно, потому что, как показал Галилей, оно эквивалентно одному из своих собственных подмножеств – множеству полных квадратов. Если мы хотим применить только что выученную замысловатую терминологию, можно сказать, что множество натуральных чисел и множество полных квадратов имеют равные кардинальные числа. Важно помнить следующее: в случае конечных множеств утверждение «часть всегда меньше целого» справедливо; в случае множеств бесконечных это не так. Мы уже видели более чем достаточно подтверждений этого обстоятельства: парадокс Галилея, предложенный Расселом вариант апории об Ахиллесе и черепахе из школы Зенона (см. выше раздел «Апология Зенона»), все чудеса бесконечной гостиницы Гильберта…


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Наполеон Бонапарт: между историей и легендой

Наполеон притягивает и отталкивает, завораживает и вызывает неприятие, но никого не оставляет равнодушным. В 2019 году исполнилось 250 лет со дня рождения Наполеона Бонапарта, и его имя, уже при жизни превратившееся в легенду, стало не просто мифом, но национальным, точнее, интернациональным брендом, фирменным знаком. В свое время знаменитый писатель и поэт Виктор Гюго, отец которого был наполеоновским генералом, писал, что французы продолжают то показывать, то прятать Наполеона, не в силах прийти к окончательному мнению, и эти слова не потеряли своей актуальности и сегодня.


Император Алексей Ι Комнин и его стратегия

Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.