Восемь этюдов о бесконечности. Математическое приключение - [53]
К тому же, как уже выяснила Омега, добавление слова А0 в список ничего не меняет, потому что мы всегда можем повторить ту же процедуру и построить еще одно слово, назовем его Aℵ, которое будет отличаться от всех без исключения слов, включенных в составленный нами бесконечный список. Итак, множество всех слов бесконечной длины, содержащих только буквы a и b, имеет мощность континуума.
Очевидно, множество всех слов бесконечной длины, составленных с использованием трех разных букв (а не только букв a и b) или четырех или пяти (или любого другого количества) разных букв, также должно иметь мощность несчетного множества, что само по себе не означает, что его мощность будет равна мощности континуума. Однако, поскольку мы можем построить между таким множеством и множеством чисел, составленных из 0 и 1, одно-однозначное и сюръективное отображение, мы видим, что его мощность действительно равна ℵ.
Еще одно (приятное) доказательство несчетности всех чисел на отрезке [0,1]
Предположим, что верна противоположная гипотеза: все точки отрезка [0,1] можно пересчитать. Из этого следует, что все эти точки можно расположить в некотором последовательном порядке – {p>1, p>2, p>3, p>4…}. Чтобы доказать (или опровергнуть) эту гипотезу, возьмем вокруг центральной точки p>1 отрезок длиной, скажем, 1/10, вокруг точки p>2 – отрезок длиной 1/100, вокруг точки p>3 – отрезок длиной 1/1000 и так далее. Поскольку все точки, содержащиеся на отрезке [0,1], попадают по меньшей мере на один из этих отрезков (вспомним, что в множестве {p>1, p>2, p>3, p>4…} были перечислены все числа, расположенные между 0 и 1), мы получаем множество, покрывающее весь отрезок [0,1]. А также можно сложить длины всех этих отрезков. В соответствии с формулой для бесконечной геометрической прогрессии:
Нам удалось, так сказать, покрыть все точки отрезка числовой прямой [0,1] интервалами, суммарная длина которых составляет всего лишь 1/9. Но это, очевидно, невозможно, так как длина исходного отрезка числовой прямой равна 1.
Таким образом, мы пришли к противоречию.
Вывод: Составить последовательность из всех точек, находящихся между 0 и 1, невозможно. Другими словами, это множество несчетно.
Поскольку рациональные числа образуют счетное множество, все рациональные числа, содержащиеся на отрезке [0,1], можно обработать определенным образом. Как? Окружая их отрезками так, чтобы суммарная длина этих отрезков не превышала 1/9. Из этого следует, что рациональные числа в сумме составляют не более 1/9 всех чисел, существующих между 0 и 1.
Однако этот верхний предел можно уточнить.
Предположим теперь, что рациональные числа, находящиеся на отрезке [0,1], располагаются следующим образом: {q>1, q>2, q>3, q>4…}. Возьмем вокруг точки q>1 интервал длиной 1/1000, вокруг точки q>2 – интервал длиной 1/10 000, вокруг точки q>3 – интервал длиной 1/100 000 и так далее. Тогда суммарная длина всех таких интервалов будет равна
Очевидно, длину суммарного интервала, охватывающего все рациональные числа на отрезке [0,1], можно уменьшать и дальше, получая эту суммарную длину сколь угодно малой. Множество, которое покрывается счетным объединением интервалов, суммарная длина которых меньше любого заранее определенного значения, называется множеством нулевой меры.
Все истинные положения легко понять после того, как они найдены; суть в том, чтобы их найти[51].
Галилео Галилей
Математика – самое прекрасное и самое могущественное произведение человеческого духа.
Стефан Банах
О радость! Никто не равнее других
Как я уже отмечал, мощность множества всех вещественных чисел – как рациональных, так и иррациональных, – расположенных между 0 и 1, обозначается символом ℵ и называется мощностью континуума. В отрезке от 0 до 1 нет ничего особенного. Его длина равна единице, но мощность любого другого отрезка – тоже ℵ. Легко видеть, что любые два отрезка равномощны, то есть существует одно-однозначное и сюръективное соответствие между любым отрезком AB и множеством точек другого отрезка, CD. Наглядно представить такое соответствие поможет следующая подсказка:
Подсказка не помогла? Тогда вот решение. Как показано на приведенном ниже чертеже, для каждой точки на отрезке АВ можно найти соответствующую ей точку на отрезке CD.
Ясно, что каждая конкретная точка более короткого отрезка, АВ, может быть соединена с разными точками отрезка CD. Получается одно-однозначное соответствие.
Так же ясно, что для каждой точки отрезка CD можно найти соответствующую ей точку отрезка АВ. Для этого нужно всего лишь провести прямую, соединяющую точку на отрезке CD с вершиной треугольника, и найти точку ее пересечения с отрезком AB. Это дает сюръективное соответствие.
Поскольку нам удалось образовать пары из всех точек двух отрезков разной длины, значит, они должны иметь одинаковую мощность – следовательно, мощность континуума, то есть ℵ.
А вот утверждение, которое может показаться еще более странным. Можно (сходным образом) доказать, что мощность любого отрезка прямой равна мощности бесконечного луча. Приведенный ниже чертеж иллюстрирует эту идею в самом общем виде. Если вы внимательно посмотрите на нее, то, я уверен, сообразите, как построить соответствие между конечным отрезком и бесконечным лучом.
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Наполеон притягивает и отталкивает, завораживает и вызывает неприятие, но никого не оставляет равнодушным. В 2019 году исполнилось 250 лет со дня рождения Наполеона Бонапарта, и его имя, уже при жизни превратившееся в легенду, стало не просто мифом, но национальным, точнее, интернациональным брендом, фирменным знаком. В свое время знаменитый писатель и поэт Виктор Гюго, отец которого был наполеоновским генералом, писал, что французы продолжают то показывать, то прятать Наполеона, не в силах прийти к окончательному мнению, и эти слова не потеряли своей актуальности и сегодня.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.