Восемь этюдов о бесконечности. Математическое приключение - [53]
К тому же, как уже выяснила Омега, добавление слова А0 в список ничего не меняет, потому что мы всегда можем повторить ту же процедуру и построить еще одно слово, назовем его Aℵ, которое будет отличаться от всех без исключения слов, включенных в составленный нами бесконечный список. Итак, множество всех слов бесконечной длины, содержащих только буквы a и b, имеет мощность континуума.
Очевидно, множество всех слов бесконечной длины, составленных с использованием трех разных букв (а не только букв a и b) или четырех или пяти (или любого другого количества) разных букв, также должно иметь мощность несчетного множества, что само по себе не означает, что его мощность будет равна мощности континуума. Однако, поскольку мы можем построить между таким множеством и множеством чисел, составленных из 0 и 1, одно-однозначное и сюръективное отображение, мы видим, что его мощность действительно равна ℵ.
Еще одно (приятное) доказательство несчетности всех чисел на отрезке [0,1]
Предположим, что верна противоположная гипотеза: все точки отрезка [0,1] можно пересчитать. Из этого следует, что все эти точки можно расположить в некотором последовательном порядке – {p>1, p>2, p>3, p>4…}. Чтобы доказать (или опровергнуть) эту гипотезу, возьмем вокруг центральной точки p>1 отрезок длиной, скажем, 1/10, вокруг точки p>2 – отрезок длиной 1/100, вокруг точки p>3 – отрезок длиной 1/1000 и так далее. Поскольку все точки, содержащиеся на отрезке [0,1], попадают по меньшей мере на один из этих отрезков (вспомним, что в множестве {p>1, p>2, p>3, p>4…} были перечислены все числа, расположенные между 0 и 1), мы получаем множество, покрывающее весь отрезок [0,1]. А также можно сложить длины всех этих отрезков. В соответствии с формулой для бесконечной геометрической прогрессии:
Нам удалось, так сказать, покрыть все точки отрезка числовой прямой [0,1] интервалами, суммарная длина которых составляет всего лишь 1/9. Но это, очевидно, невозможно, так как длина исходного отрезка числовой прямой равна 1.
Таким образом, мы пришли к противоречию.
Вывод: Составить последовательность из всех точек, находящихся между 0 и 1, невозможно. Другими словами, это множество несчетно.
Поскольку рациональные числа образуют счетное множество, все рациональные числа, содержащиеся на отрезке [0,1], можно обработать определенным образом. Как? Окружая их отрезками так, чтобы суммарная длина этих отрезков не превышала 1/9. Из этого следует, что рациональные числа в сумме составляют не более 1/9 всех чисел, существующих между 0 и 1.
Однако этот верхний предел можно уточнить.
Предположим теперь, что рациональные числа, находящиеся на отрезке [0,1], располагаются следующим образом: {q>1, q>2, q>3, q>4…}. Возьмем вокруг точки q>1 интервал длиной 1/1000, вокруг точки q>2 – интервал длиной 1/10 000, вокруг точки q>3 – интервал длиной 1/100 000 и так далее. Тогда суммарная длина всех таких интервалов будет равна
Очевидно, длину суммарного интервала, охватывающего все рациональные числа на отрезке [0,1], можно уменьшать и дальше, получая эту суммарную длину сколь угодно малой. Множество, которое покрывается счетным объединением интервалов, суммарная длина которых меньше любого заранее определенного значения, называется множеством нулевой меры.
Все истинные положения легко понять после того, как они найдены; суть в том, чтобы их найти[51].
Галилео Галилей
Математика – самое прекрасное и самое могущественное произведение человеческого духа.
Стефан Банах
О радость! Никто не равнее других
Как я уже отмечал, мощность множества всех вещественных чисел – как рациональных, так и иррациональных, – расположенных между 0 и 1, обозначается символом ℵ и называется мощностью континуума. В отрезке от 0 до 1 нет ничего особенного. Его длина равна единице, но мощность любого другого отрезка – тоже ℵ. Легко видеть, что любые два отрезка равномощны, то есть существует одно-однозначное и сюръективное соответствие между любым отрезком AB и множеством точек другого отрезка, CD. Наглядно представить такое соответствие поможет следующая подсказка:
Подсказка не помогла? Тогда вот решение. Как показано на приведенном ниже чертеже, для каждой точки на отрезке АВ можно найти соответствующую ей точку на отрезке CD.
Ясно, что каждая конкретная точка более короткого отрезка, АВ, может быть соединена с разными точками отрезка CD. Получается одно-однозначное соответствие.
Так же ясно, что для каждой точки отрезка CD можно найти соответствующую ей точку отрезка АВ. Для этого нужно всего лишь провести прямую, соединяющую точку на отрезке CD с вершиной треугольника, и найти точку ее пересечения с отрезком AB. Это дает сюръективное соответствие.
Поскольку нам удалось образовать пары из всех точек двух отрезков разной длины, значит, они должны иметь одинаковую мощность – следовательно, мощность континуума, то есть ℵ.
А вот утверждение, которое может показаться еще более странным. Можно (сходным образом) доказать, что мощность любого отрезка прямой равна мощности бесконечного луча. Приведенный ниже чертеж иллюстрирует эту идею в самом общем виде. Если вы внимательно посмотрите на нее, то, я уверен, сообразите, как построить соответствие между конечным отрезком и бесконечным лучом.
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
В тайниках тела (Приключения в микромире. Том VI). — Б.м.: Salamandra P.V.V., 2014. - 155 c., илл. — (Polaris: Путешествия, приключения, фантастика. Вып. LХI). Гигантские пауки и крошечные люди, кровопролитные битвы муравьев, отчаянные сражения микробов, путешествия внутри человеческого тела и невообразимые вселенные, заключенные в атомах — проникновение в микромир издавна было заветной мечтой фантастов. Публикацию забытых и редких произведений, объединенных общей темой «приключений в микромире», продолжает в серии «Polaris» познавательная книга Г.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В этой книге говорится об Исконной Вере и Стари у Южных Славян. Исследование, которое мы провели, не основывается на песнях, преданиях и обрядах, сохранившихся до сих пор, ни даже на письменных летописях. Главная особенность научного подхода, примененного в этой книге, это его опора на образные представления, которые у Южных Славян, совместно со многими другими народами, возникли со временем.
«Древние люди летали в космос!», «Гагарин не был первым космонавтом!», «Американцы сфальсифицировали высадку на Луну!», «Космонавты встречали инопланетян и ангелов!». Подобные заголовки часто встречаются в прессе. В них не было бы большой беды, если бы из-за порождаемых мифов не формировалось конспирологическое мировоззрение, отрицающее историю космонавтики и достижения науки. Космическую мифологию легко опровергнуть фактами, но чтобы добраться до них, нужны знания и опыт. Книга Антона Первушина, писателя и научного журналиста, поможет сориентироваться в потоках информации и научиться отделять правду от вымысла.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Всю жизнь мы видим сны: впервые они являются нам в утробе матери и не покидают до смертного часа. Но что же такое — сон? Нужен ли человеку этот «бесценный дар Морфея»? Можно ли считать сном гипноз? Почему во сне вспоминается забытое, казалось бы, навсегда? Есть ли связь между сном и памятью? Ответы на эти вопросы вы найдете в работе, посвященной этим еще не до конца изученным проблемам, связанным с деятельностью мозга.* * * Подписная серия «Знак вопроса» издательства «Знание» выпускалась ежемесячно, начиная с 1989 года.