Восемь этюдов о бесконечности. Математическое приключение - [45]

Шрифт
Интервал

Администратор, лишь мгновением раньше бывшая в восторге от того блестящего метода, который предложил для решения проблемы расселения профессор, снова впала в полнейшее отчаяние. Перед ней снова возникла проблема уровня заполненности гостиницы. Хороший администратор гостиницы просто не может позволить себе иметь бесконечно много (!) незанятых номеров. Что подумают хозяева гостиницы?

– Послушайте, – сказала Омега профессору, – одни только натуральные числа могут заполнить всю гостиницу, и так оно раньше и было. А теперь вы предлагаете какую-то безумную схему, по которой натуральные числа вместе с бесконечным количеством других бесконечных множеств, каждое из которых тоже могло бы заселить всю гостиницу, создают мне уровень заполненности гораздо ниже 100 процентов. По-моему, в этом нет никакой логики. Я, конечно, не специалист, но нет ли какого-нибудь способа, который позволил бы мне отчитаться начальству о значительно более высокой заполненности гостиницы?

– Что же, я думал, что решение будет гораздо более эффектным, если останется бесконечное число незанятых номеров. Но если вас интересует только уровень заполненности, я могу предложить другой вариант, в котором все номера будут заполнены на 100 процентов.

– Пожалуйста, расскажите мне о нем! – взмолилась Омега.

– Прежде чем я объясню это решение, нам нужно провести небольшую подготовку. Поставим в соответствие каждому рациональному числу пару чисел. Первым из них будет его числитель, а вторым – знаменатель. Например, числу 3/4 будет соответствовать пара чисел (3, 4). Каждое натуральное число n мы будем записывать в виде дроби n/1; тогда ему будет соответствовать пара (n, 1). Например, числу 7 соответствует пара (7, 1). Теперь расположим все эти числа следующим образом:



Отмечу для любителей алгебры, что в общем случае мы выделяем числу n/m номер n² – m + 1, если n ≥ m, и номер (m – 1)² + n, если n < m.

Например, у числа 3/2 числитель больше знаменателя; следовательно, ему должен быть предоставлен номер 3² – 2 + 1, то есть номер 8. Можете убедиться сами: если начать с пары (1, 1) и следовать по стрелкам (см. приведенный выше чертеж), то клетка с парой (3, 2) будет восьмой на этом пути.

Администратор была вне себя от счастья. Она даже запустила новую рекламную кампанию под лозунгом «Мы бесконечно рады всем!».

Профессор Финкельштейн-Островский-Канторович отметил, что существует огромное количество разных способов расселения в гостинице рациональных чисел:

– Вот один из этих способов. Определим для каждой дроби n/m «высоту», равную сумме числителя и знаменателя этой дроби. Другими словами, пусть высота h дроби n/m равна n + m. Наименьшая такая высота равна 2, причем есть только одна дробь с такой высотой – а именно 1/1. Есть два рациональных числа, высота которых равна 3; это числа 1/2 и 2/1. У чисел 1/3, 2/2 и 3/1 высота h = 4, а таких чисел, для которых h = 5, существует четыре: 1/4, 2/3, 2/3, 4/1. Таким образом, все рациональные числа можно расположить в порядке возрастания их высоты{28}.


Головоломка

Докажите, что по предложенной выше схеме расселения число n/m будет жить в номере, соответствующем выражению ½ · (n + m – 2) (n + m – 1) + n.

Например, число 2/3 (n = 2, m = 3) окажется в номере ½ · (2 + 3 – 2) (2 + 3 – 1) + 2 = 8.

Подсказка:



Слава о гостинице, которая способна разместить любую группу постояльцев, широко разошлась. Не имело значения, какая приезжала группа, конечная или бесконечная; не имело значения, были ли уже в гостинице другие жильцы; даже не имело значения, были ли все номера в гостинице уже забронированы. Как только приезжала новая группа постояльцев, им всем можно было найти место.

Но однажды случилось нечто, чего Омега совершенно не ожидала. Утром этого дня по электронной почте пришло сообщение с дальней планеты Дельта-Континуум: в гостиницу собирались приехать все числа, расположенные между 0 и 1. Администратор гостиницы, разумеется, знала, что между 0 и 1 заключено «довольно много» чисел, например³√3/2, е>6 – π – π>5, 1/2, 3/156, е/47, (5 + 13√2)/213… Тем не менее она не предполагала, что расселение всех их вызовет какие-либо затруднения. Разве в гостинице уже не жило бесконечное количество бесконечных множеств? Что же может быть трудного в размещении всего одной-единственной бесконечной группы?

Но затруднения возникли, и все ее попытки их устранить не дали никакого результата. Ей ничего не оставалось, как снова обратиться за помощью к профессору Финкельштейну-Островскому-Канторовичу или Сигме и Лямбде. Омега решила позвонить профессору. К ее удивлению и разочарованию, заслуженный профессор не только не смог предложить решения, но и установил, что решения у этой задачи попросту нет.

– А если выселить из гостиницы все натуральные числа? Не поможет ли это? – все же не сдавалась Омега.

– Ничуть не поможет, – уверенно отвечал профессор.

– Как же может быть, что в бесконечной гостинице, тем более пустой, не хватит места для одной-единственной группы постояльцев? – по-прежнему не желала мириться с этой неприятной новостью Омега.

– Не упрямьтесь, – сказал профессор. – Вместо того чтобы искать способы расселения этих чисел, позвольте, я докажу вам, что в бесконечной гостинице не найдется места не только для всех чисел между 0 и 1, но даже и для всех чисел, записанных с использованием только цифр 0 и 1.


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Человек в поисках себя. Очерки антропологических и этических учений. Том 1. Античность и Средневековье

Работа представляет комплексный анализ антропологических и этических учений с древнейших времен до современности в их взаимозависимости и взаимовлиянии. Адресуется студентам и аспирантам гуманитарных вузов, а также широкому кругу читателей.


Беседы о науке

Штрихи к портретам известных отечественных и зарубежных деятелей науки: академиков – Г. Марчука, Л. Окуня, Ж. Алферова, А.Сахарова, С.Вавилова, Ф.Мартенса, О.Шмидта, А. Лейпунского, Л.Канторовича, В.Кирюхина, А.Мигдала, С.Кишкина, А. Берга, философов – Н.Федорова, А. Богданова (Малиновского), Ф.Энгельса, А. Пятигорского, М.Хайдеггера, М. Мамардашвили, В.Катагощина, выдающихся ученых и конструкторов – П.Чебышёва, К. Циолковского, С.Мальцова, М. Бронштейна, Н.Бора, Д.Иваненко, А.Хинчина, Г.Вульфа, А.Чижевского, С. Лавочкина, Г.Гамова, Б.


Инквизиция и инквизиторы во Франции

После Альбигойского крестового похода — серии военных кампаний по искоренению катарской ереси на юге Франции в 1209–1229 годах — католическая церковь учредила священные трибуналы, поручив им тайный розыск еретиков, которым все-таки удалось уберечься от ее карающей десницы. Так во Франции началось становление инквизиции, которая впоследствии распространилась по всему католическому миру. Наталия Московских рассказывает, как была устроена французская инквизиция, в чем были ее особенности, как она взаимодействовала с папским престолом и королевской властью.


Отечественная война 1812 года глазами современников

В книге собраны воспоминания участников Отечественной войны 1812 года и заграничного похода российской армии, окончившегося торжественным вступлением в Париж в 1814 году. Эти свидетельства, принадлежащие самым разным людям — офицерам и солдатам, священнослужителям и дворянам, купцам и городским обывателям, иностранцам на русской службе, прислуге и крепостным крестьянам, — либо никогда прежде не публиковались, либо, помещенные в периодической печати, оказались вне поля зрения историков. Лишь теперь, спустя двести лет после Отечественной войны 1812 года, они занимают свое место в истории победы русского народа над наполеоновским нашествием.


О времени, пространстве и других вещах. От египетских календарей до квантовой физики

Автор книги рассказывает о появлении первых календарей и о том, как они изменялись, пока не превратились в тот, по которому мы сейчас живем. Вы узнаете много интересного и познавательного о метрических системах, денежных единицах и увлекательных парадоксах физики, химии и математики. Занимательные исторические примеры, иллюстрируя сухие факты, превращаются в яркие рассказы, благодаря живому и образному языку автора.


Этюды о Галилее

Одна из первых монографий Александра Койре «Этюды о Галилее» представляет собой три, по словам самого автора, независимых друг от друга работы, которые тем не менее складываются в единое целое. В их центре – проблема рождения классической науки, становление идей Нового времени, сменивших антично-средневековые представления об устройстве мира и закономерностях физических явлений. Койре, видевший научную, философскую и религиозную мысли в тесной взаимосвязи друг с другом, обращается здесь к сюжетам и персонажам, которые будут находиться в поле внимания философа на протяжении значительной части его творческого пути.