Восемь этюдов о бесконечности. Математическое приключение - [46]

Шрифт
Интервал

– Вы серьезно? – спросила администратор.

– Профессор Финкельштейн-Островский-Канторович всегда серьезен, когда говорит о математике или музыке, – ответил он, говоря о себе в третьем лице.

– Ну хорошо. Тогда извольте объясниться. – И Омега приготовилась выслушать его объяснение.

Объяснение профессора Финкельштейна-Островского-Канторовича

– Прежде всего мы должны договориться, что записываем все числа в бесконечной нотации. Я хочу сказать, что вместо 0,101 мы будем писать 0,101000… Теперь начнем с предположения, что нам все же удалось решить эту задачу, и мы смогли найти в гостинице номера для всех чисел.

– Я полагаю, вы собираетесь показать мне доказательство от противного, не так ли? Как это типично для математиков! – сказала Омега.

– Вот как будет выглядеть распределение чисел по номерам: число А>1 будет в номере 1, число А>2 – в номере 2, число А>3 – в номере 3 и так далее. Кто же такие все эти «А»? Мы сможем узнать их, потому что под своими «новыми» именами они будут выглядеть следующим образом:


A>1 = 0,a>11a>12a>13a>14a>15

A >2 = 0,a>21a>22a>23a>24a>25

A >3 = 0,a>31a>32a>33a>34a>35

A >4 = 0,a>41a>42a>43a>44a>45

A >5 = 0,a>51a>52a>53a>54a>55

..……………………


Другими словами, a>ik – это k-я цифра после запятой в числе, которое будет жить в i-м номере. При этом следует помнить, что любая цифра, обозначенная a>ik, – это либо 0, либо 1. Приведу пример. Предположим, что число 0,111000110010… живет в номере 3. Следовательно, для этого числа a>31 = 1, a>32 = 1, a>33 = 1, a>34 = 0, a>35 = 0… – дальше все очевидно. Так вот, – продолжал профессор, – я могу предъявить вам число, которое находится между 0 и 1, то есть входит в группу постояльцев, приехавших с Дельты-Континуума, но не относится к числам, живущим в гостинице. Этот факт докажет, что найти в гостинице место для всех чисел, расположенных между 0 и 1, невозможно, потому что список, который мы составили, получился слишком общим.

Обозначим число, не живущее в гостинице, В. Разумеется, мы запишем его в виде B = 0, b>1b>2b>3b>4… где b>i может быть равно либо 0, либо 1, и образуем его так, чтобы никакое b>i не было равно a>ii (a>ii – это все числа, стоящие на диагонали составленного нами списка). Как мы это сделаем?

Идея чрезвычайно проста. Если a>ii = 0, то b>i должно быть равно 1. Если же a>ii = 1, то b>i должно быть равно 0.

Приведу пример. Допустим, мы как-то расположили все числа от 0 до 1, в записи которых используются только цифры 0 и 1. Они расположены совершенно в произвольном порядке, но предположим, что мы расставили их следующим образом:


A>1 = 0,010010001…

A >2 = 0,010101010…

A >3 = 0,110110110…

A >4 = 0,100110111…

A >5 = 0,011111110…

..……………………


Сформируем теперь число В. Цифру b>1 мы определим равной 1, потому что a>11 = 0 (первая цифра после запятой в числе А>1 равна 0); цифра b>2 должна быть равна 0, потому что a>22 = 1 (a>22 – это вторая цифра после запятой в числе А>2); цифра b>3 должна быть равна 1, потому что a>33 = 0. И так далее.

– Но откуда вы знаете, что число В не живет в гостинице? – не смогла смолчать Омега.

– Это совершенно очевидно. Первая цифра после запятой в числе В, то есть b>1, должна отличаться от первой цифры после запятой в числе A>1 (то есть от цифры a>11). Мы уверены в этом, потому что мы специально построили число В так, чтобы на этом месте стояла другая цифра. Отсюда очевидно, что число В не может быть равно числу А>1, даже если бы все остальные его цифры в точности совпадали со всеми остальными цифрами числа А >1.

Перейдем теперь ко второй цифре после запятой в числе В, то есть к цифре b>2. Она должна отличаться от второй цифры после запятой в числе А>2 – по той же самой причине. Следовательно, каковы бы ни были другие цифры числа В, это число никак не может быть равно числу А>2.

Продолжим аналогичные рассуждения для всех остальных цифр числа В – для всего их бесконечного количества. Результат будет тем же самым для каждой из них. В числе В всегда будет по меньшей мере одна цифра, отличающая его от чисел, входящих в группу A>i. Следовательно, мы должны заключить, что число В не может быть равно никакому конкретному числу А. Другими словами, число В не является постояльцем гостиницы. Оно приехало с Дельты-Континуума вместе со всеми своими друзьями, но, в отличие от них, в гостинице не поселилось.

– Если это так, я внесу число В в самое начало списка, перед А>1! – Омега запрыгала на месте, чрезвычайно возбужденная идеей, которая только что пришла ей в голову. Надо сказать, что разговоры с Омегой не были трудными для профессора, но иногда раздражали его.

– Да вы попросту ничего не поняли из моего объяснения! Смотрите: даже если вы добавите число В в начало списка, я всегда смогу сформировать некое новое число – назовем его Y, – которого в списке не будет, точно так же, как я сформировал число В.

– Вы правы. Но я все равно не понимаю, как может быть, что кому-то из постояльцев не найдется места в бесконечной гостинице.

– Это значит, что, хотя количество номеров в вашей гостинице и бесконечно, количество постояльцев, которые хотят в ней поселиться, еще более бесконечно, – объяснил профессор.

– Что вы такое говорите? Более бесконечно? – спросила чрезвычайно взволнованная Омега. – Объясните же мне, как бесконечное может быть более бесконечным, чем бесконечное!


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
История изучения восточных языков в русской императорской армии

Монография впервые в отечественной и зарубежной историографии представляет в системном и обобщенном виде историю изучения восточных языков в русской императорской армии. В работе на основе широкого круга архивных документов, многие из которых впервые вводятся в научный оборот, рассматриваются вопросы эволюции системы военно-востоковедного образования в России, реконструируется история военно-учебных заведений лингвистического профиля, их учебная и научная деятельность. Значительное место в работе отводится деятельности выпускников военно-востоковедных учебных заведений, их вкладу в развитие в России общего и военного востоковедения.


Лето: Секреты выживания растений и животных в сезон изобилия

Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.


История викингов. Дети Ясеня и Вяза

Немногие культуры древности вызывают столько же интереса, как культура викингов. Всего за три столетия, примерно с 750 по 1050 год, народы Скандинавии преобразили северный мир, и последствия этого ощущаются до сих пор. Викинги изменили политическую и культурную карту Европы, придали новую форму торговле, экономике, поселениям и конфликтам, распространив их от Восточного побережья Америки до азиатских степей. Кроме агрессии, набегов и грабежей скандинавы приносили землям, которые открывали, и народам, с которыми сталкивались, новые идеи, технологии, убеждения и обычаи.


Дарвин в городе: как эволюция продолжается в городских джунглях

Голуби, белки, жуки, одуванчики – на первый взгляд городские флора и фауна довольно скучны. Но чтобы природа заиграла новыми красками, не обязательно идти в зоопарк или включать телевизор. Надо просто знать, куда смотреть и чему удивляться. В этой книге нидерландский эволюционный биолог Менно Схилтхёйзен собрал поразительные примеры того, как от жизни в городе меняются даже самые обычные животные и растения. В формате PDF A4 сохранен издательский макет.


Фон-Визин

«Представляемая мною в 1848 г., на суд читателей, книга начата лет за двадцать пред сим и окончена в 1830 году. В 1835 году, была она процензирована и готовилась к печати, В продолжение столь долгого времени, многие из глав ее напечатаны были в разных журналах и альманахах: в «Литературной Газете» Барона Дельвига, в «Современнике», в «Утренней Заре», и в других литературных сборниках. Самая рукопись читана была многими литераторами. В разных журналах и книгах встречались о ней отзывы частию благосклонные, частию нет…».


Бой 28 июля 1904 года

Бой 28 июля 1904 г. — один из малоисследованых и интересных боев паровых броненосных эскадр. Сражение в Желтом море (японское название боя 28.07.1904 г.) стало первым масштабным столкновением двух противоборствующих флотов в войне между Россией и Японией в 1904–05 гг. Этот бой стал решающим в судьбе русской 1-й эскадры флота Тихого океана. Бой 28.07.1904 г. принес новый для XX века боевой опыт планирования, проведения морских операций в эпоху брони и пара, управления разнородными силами флота; боевого использования нарезной казнозарядной артиллерии с бездымным порохом и торпедного оружия.