Восемь этюдов о бесконечности. Математическое приключение - [20]
На что же делится число S?
Оно не может делиться на два, так как выражение в скобках равно четному числу (поскольку 2 – один из сомножителей этого выражения). Прибавление единицы делает S нечетным числом.
Кроме того, S не может делиться на 3. Это можно утверждать по такой же причине: число, стоящее в скобках, делится на 3 (потому что 3 – один из сомножителей этого выражения); следовательно, при прибавлении единицы получается число, не делящееся на 3 (собственно говоря, при делении S на любое простое число из списка получается остаток, равный 1).
Число S также не может делиться на 4, поскольку оно не делится на 2. Вообще, любое число, делящееся на некий делитель, также делится и на его простые сомножители. Например, любое число, делящееся на 6, делится также на 2 и на 3.
Продолжая в том же духе, мы поймем, немного поразмыслив, что число S не может делиться ни на 5, ни на 6, ни на 7, ни на какое бы то ни было другое число до числа P включительно, которое, как мы предполагаем, является самым большим простым числом. Это оставляет нам две возможности:
1. Либо S – простое число, большее P.
2. Либо S делится на некое простое число, не входящее в наш список, то есть на простое число, большее P (поскольку мы уже видели, что оно не делится ни на одно из простых чисел, меньших или равных P).
Какой бы вариант мы ни выбрали, мы в любом случае приходим к противоречию с нашим исходным утверждением, а именно, что число P – самое большое простое число. Если же предположение о том, что P – самое большое простое число, приводит к противоречию, значит, самого большого простого числа не существует.
Ч. т. д.
Кстати, если вам интересно, используемое во многих языках вместо «ч. т. д.» сокращение QED происходит от латинских слов Quod Erat Demonstrandum, то есть «что и нужно было продемонстрировать»: каждый математик гордо выписывает это радостное обозначение в конце своего рассуждения, когда ему наконец удается довести до завершения какое-нибудь длинное и сложное доказательство.
Спиноза часто использовал это латинское сокращение. Интересно отметить, что сам Евклид применял греческое сокращение OEΔ, внешне похожее на латинское и означающее ὅπԑρ ἔδει δεῖξαι – «что и нужно было показать».
Важное примечание: доказательство Евклида не особенно конструктивно. Иначе говоря, оно не дает простого рецепта получения новых простых чисел. Число S, как мы уже указывали, вполне может не быть простым числом: оно также может быть числом составным, делящимся на простое число, большее P.
Вот иллюстрация этого утверждения.
Предположим, что число 3 – самое большое из существующих простых чисел (разумеется, это предположение абсолютно ложно). Образуем число S, равное (2 × 3) + 1 = 7, и 7 действительно оказывается простым числом. То же верно и для S = (2 × 3 × 5) + 1, для S = (2 × 3 × 5 × 7) + 1 и для S = (2 × 3 × 5 × 7 × 11) + 1.
Но после этого мы получаем пример осуществления второго варианта:
(2 × 3 × 5 × 7 × 11 × 13) + 1 = 30 031 = 59 × 509.
Другими словами, (2 × 3 × 5 × 7 × 11 × 13) + 1 есть составное число, делящееся на простые числа 59 и 509, которые оба больше числа 13, которое временно выступало в роли «самого большого простого числа». Видим, что никакого противоречия в доказательстве Евклида нет – оно безупречно.
Интересно отметить, что довольно многим впервые столкнувшимся с доказательством Евклида кажется, что, если бы им его не показали, они вполне смогли бы открыть его самостоятельно. «Подумаешь, перемножить простые числа и прибавить единицу. Что тут сложного? Я бы и сам до этого додумался за пару минут, не больше!» В большинстве случаев это иллюзия. Простота этого доказательства лишь подчеркивает его красоту и гениальность.
Я встречал выдающихся математиков, убежденных, что предложенное Евклидом доказательство бесконечности простых чисел – одна из самых прекрасных теорем во всей истории математики. Будь и я выдающимся математиком, я бы тоже, несомненно, присоединил мой голос к их хору.
Числа Мерсенна и Книга рекордов Гиннесса
Тот факт, что количество простых чисел бесконечно, означает, что мы никогда не сможем составить полный список всех простых чисел. Всегда будет оставаться следующее простое число, большее, чем самое большое число в нашем списке.
Число, носящее почетный титул «самого большого простого числа, открытого до 2018 г.», равно 2>77 232 917 – 1[17]. Я не советовал бы вам пытаться сосчитать это число и выписать его в тетради: в ней просто не хватит для этого страниц. Если учесть, что количество атомов во Вселенной меньше, чем 2>320, наверное, можно составить некоторое представление о том, насколько огромно число 2>77 232 917 – 1. В нем 23 249 425 знаков – почти на миллион (!) больше, чем в числе, которое считалось самым большим простым числом до него: то было открыто в январе 2016 г., и его значение – 2>74 207 281 – 1 (в этом числе «только лишь» 22 338 618 знаков). При этом число 2>320 всего-то 96-значное. Все относительно!
Кстати говоря, доказательство того, что это чудовищное число относится к простым числам, было получено не живым математиком из плоти и крови, а сетевым вычислительным проектом под названием GIMPS (Great Internet Mersenne Prime Search – «Великий интернет-поиск простых чисел Мерсенна»).
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Книга для чтения содержит иллюстративные примеры к принципам подготовки курсовых работ, взятые из текстов курсовых работ по направлению «Международные отношения». Теоретическое объяснение сопровождается фрагментами, при анализе которых студенты учатся не только выявлять и употреблять клише научного стиля речи, но и продуцировать собственные тексты с опорой на имеющиеся образцы.
Сегодня искусственный интеллект меняет каждый аспект нашей жизни — ничего подобного мы не видели со времен открытия электричества. Но любая новая мощная технология несет с собой потенциальные опасности, и такие выдающиеся личности, как Стивен Хокинг и Илон Маск, не скрывают, что видят в ИИ возможную угрозу существованию человечества. Так стоит ли нам бояться умных машин? Матчи Гарри Каспарова с суперкомпьютером IBM Deep Blue стали самыми известными в истории поединков человека с машинами. И теперь он использует свой многолетний опыт противостояния с компьютерами, чтобы взглянуть на будущее искусственного интеллекта.
Самые необычные природные явления: брайникл, фата-моргана, прибрежное капучино, огни Святого Эльма, шаровая молния, огненная радуга, огненный вихрь, двояковыпуклые облака, красные приливы, световые столбы, волны-убийцы.
Нам предстоит познакомиться с загадочным племенем рудокопов, обитавших около 2–4 тысячелетий назад в бассейне реки Россь (Западная Белоруссия). Именно этот район называл М. В. Ломоносов как предполагаемую прародину племени россов. Новые данные позволяют более убедительно обосновать и развить эту гипотезу. Подобные знания помогают нам лучше понять некоторые национальные традиции, закономерности развития и взаимодействия культур, формирования национального характера, а также единство прошлого и настоящего, человека и природы.http://znak.traumlibrary.net.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.