Восемь этюдов о бесконечности. Математическое приключение - [20]
На что же делится число S?
Оно не может делиться на два, так как выражение в скобках равно четному числу (поскольку 2 – один из сомножителей этого выражения). Прибавление единицы делает S нечетным числом.
Кроме того, S не может делиться на 3. Это можно утверждать по такой же причине: число, стоящее в скобках, делится на 3 (потому что 3 – один из сомножителей этого выражения); следовательно, при прибавлении единицы получается число, не делящееся на 3 (собственно говоря, при делении S на любое простое число из списка получается остаток, равный 1).
Число S также не может делиться на 4, поскольку оно не делится на 2. Вообще, любое число, делящееся на некий делитель, также делится и на его простые сомножители. Например, любое число, делящееся на 6, делится также на 2 и на 3.
Продолжая в том же духе, мы поймем, немного поразмыслив, что число S не может делиться ни на 5, ни на 6, ни на 7, ни на какое бы то ни было другое число до числа P включительно, которое, как мы предполагаем, является самым большим простым числом. Это оставляет нам две возможности:
1. Либо S – простое число, большее P.
2. Либо S делится на некое простое число, не входящее в наш список, то есть на простое число, большее P (поскольку мы уже видели, что оно не делится ни на одно из простых чисел, меньших или равных P).
Какой бы вариант мы ни выбрали, мы в любом случае приходим к противоречию с нашим исходным утверждением, а именно, что число P – самое большое простое число. Если же предположение о том, что P – самое большое простое число, приводит к противоречию, значит, самого большого простого числа не существует.
Ч. т. д.
Кстати, если вам интересно, используемое во многих языках вместо «ч. т. д.» сокращение QED происходит от латинских слов Quod Erat Demonstrandum, то есть «что и нужно было продемонстрировать»: каждый математик гордо выписывает это радостное обозначение в конце своего рассуждения, когда ему наконец удается довести до завершения какое-нибудь длинное и сложное доказательство.
Спиноза часто использовал это латинское сокращение. Интересно отметить, что сам Евклид применял греческое сокращение OEΔ, внешне похожее на латинское и означающее ὅπԑρ ἔδει δεῖξαι – «что и нужно было показать».
Важное примечание: доказательство Евклида не особенно конструктивно. Иначе говоря, оно не дает простого рецепта получения новых простых чисел. Число S, как мы уже указывали, вполне может не быть простым числом: оно также может быть числом составным, делящимся на простое число, большее P.
Вот иллюстрация этого утверждения.
Предположим, что число 3 – самое большое из существующих простых чисел (разумеется, это предположение абсолютно ложно). Образуем число S, равное (2 × 3) + 1 = 7, и 7 действительно оказывается простым числом. То же верно и для S = (2 × 3 × 5) + 1, для S = (2 × 3 × 5 × 7) + 1 и для S = (2 × 3 × 5 × 7 × 11) + 1.
Но после этого мы получаем пример осуществления второго варианта:
(2 × 3 × 5 × 7 × 11 × 13) + 1 = 30 031 = 59 × 509.
Другими словами, (2 × 3 × 5 × 7 × 11 × 13) + 1 есть составное число, делящееся на простые числа 59 и 509, которые оба больше числа 13, которое временно выступало в роли «самого большого простого числа». Видим, что никакого противоречия в доказательстве Евклида нет – оно безупречно.
Интересно отметить, что довольно многим впервые столкнувшимся с доказательством Евклида кажется, что, если бы им его не показали, они вполне смогли бы открыть его самостоятельно. «Подумаешь, перемножить простые числа и прибавить единицу. Что тут сложного? Я бы и сам до этого додумался за пару минут, не больше!» В большинстве случаев это иллюзия. Простота этого доказательства лишь подчеркивает его красоту и гениальность.
Я встречал выдающихся математиков, убежденных, что предложенное Евклидом доказательство бесконечности простых чисел – одна из самых прекрасных теорем во всей истории математики. Будь и я выдающимся математиком, я бы тоже, несомненно, присоединил мой голос к их хору.
Числа Мерсенна и Книга рекордов Гиннесса
Тот факт, что количество простых чисел бесконечно, означает, что мы никогда не сможем составить полный список всех простых чисел. Всегда будет оставаться следующее простое число, большее, чем самое большое число в нашем списке.
Число, носящее почетный титул «самого большого простого числа, открытого до 2018 г.», равно 2>77 232 917 – 1[17]. Я не советовал бы вам пытаться сосчитать это число и выписать его в тетради: в ней просто не хватит для этого страниц. Если учесть, что количество атомов во Вселенной меньше, чем 2>320, наверное, можно составить некоторое представление о том, насколько огромно число 2>77 232 917 – 1. В нем 23 249 425 знаков – почти на миллион (!) больше, чем в числе, которое считалось самым большим простым числом до него: то было открыто в январе 2016 г., и его значение – 2>74 207 281 – 1 (в этом числе «только лишь» 22 338 618 знаков). При этом число 2>320 всего-то 96-значное. Все относительно!
Кстати говоря, доказательство того, что это чудовищное число относится к простым числам, было получено не живым математиком из плоти и крови, а сетевым вычислительным проектом под названием GIMPS (Great Internet Mersenne Prime Search – «Великий интернет-поиск простых чисел Мерсенна»).
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.