Восемь этюдов о бесконечности. Математическое приключение - [21]

Шрифт
Интервал

Что же такое «число Мерсенна»? Возможно, правильнее было бы спросить иначе: кто такой Мерсенн? Числа вида 2>n – 1 называют числами Мерсенна в честь французского философа, богослова, музыковеда и математика Марена Мерсенна (1588–1648). Если вам кажется, что перечень его титулов недостаточно впечатляющ, позвольте мне добавить еще один: Мерсенн был первым человеком, измерившим скорость звука.

Все ли числа Мерсенна простые? Вовсе нет.

Например, 2>4 – 1 = 15 – не простое число (15 = 3 × 5).

Те, кто еще не забыл уроки старших классов (или, скажем, все еще учится в школе), вероятно, знают, что число Мерсенна не относится к простым, если простым числом не является его степенной показатель. Дело в том, что в этом случае такое число всегда можно разложить на два сомножителя. Механизм, лежащий в основе этого правила, любезно вызвалось проиллюстрировать на собственном примере число 2>6 – 1:

2>6 – 1 = 2 >2 × 3 – 1 = (2² – 1) (2 >4 + 2 ² + 1) = 3 × 21[18].

Другими словами, если степенной показатель – составное число, то соответствующее число Мерсенна всегда можно разложить на множители, что доказывает, что и оно будет числом составным. Для его разложения есть общая формула:

2>n >· >m – 1 = (2>n – 1) (1 + 2>n + 2²>n + … + 2>(>m> – 1) · >n).

Если эта формула не кажется вам особенно интересной, не беспокойтесь. Собственно говоря, сама формула не столь важна. Важен тот факт, что если в степенном показателе стоит не простое число, то и число Мерсенна с этим показателем не будет простым. Но если составной показатель гарантирует составное число Мерсенна, дальше, несомненно, естественно задать следующий вопрос: «Гарантирует ли простой показатель, что число Мерсенна будет простым?»

Попробуем проверить.

2² – 1, 2³ – 1, 2>5 – 1 и 2>7 – 1 – числа простые (соответственно 3, 7, 31 и 127). Пока что все хорошо. Сле- дующее простое число после 7 – это 11, но 2>11 – 1 – это не простое число: 2>11 – 1 = 2047 = 23 × 89.

Как ни печально, наличие простого числа в степенном показателе не гарантирует, что соответствующее число Мерсенна тоже будет простым числом. Будь это так, мы бы располагали простым способом находить все новые и новые простые числа. Например, можно было бы взять то колоссальное простое число, о котором мы говорили несколькими строчками выше, использовать его в качестве степенного показателя 2, вычесть единицу и получить новое – и еще более колоссальное – простое число. В его показателе стояло бы число, содержащее более 20 миллионов цифр. Подумайте только, каким ужасающе огромным было бы это число – оно выходило бы за пределы воображения простых смертных. Простое ли это число на самом деле? Я этого не знаю и не думаю, что когда-нибудь узнаю.

Мерсенн исследовал эти числа, носящие теперь его имя, в работе, опубликованной в 1644 г. Она вышла под величественным заголовком «Физико-математические размышления» (Cogitata Physico-Mathematica). Мерсенн проверил все простые степенные показатели до 257 и заключил, что числа вида 2>P – 1 должны быть простыми при P = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. Правильный перечень немного отличается от этого и выглядит так: P = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127.

Судите сами, можно ли считать процент точных попаданий Мерсенна впечатляющим.

Числа Мерсенна и совершенные числа

Помните совершенные числа, с которыми мы познакомились в разделе, посвященном Пифагору? Если вы уже забыли про них, напомню, что совершенным называется число, сумма собственных делителей которого равна самому числу. Еще Евклид знал, что, если 2>P – 1 – простое число, то его умножение на 2>P> – 1 всегда дает совершенное число. Разумеется, Евклид не называл такие числа числами Мерсенна. В его время не только еще не родился сам Мерсенн, но даже не познакомились родители прародителей его прародителей.

Приведем несколько примеров. 2³ – 1 – простое число (7); следовательно, (2³ – 1) × 2² = 28 – число совершенное. Аналогичным образом, 2>5 – 1 – простое число (31); следовательно, (2>5 – 1) × 2>4 = 496 – число совершенное. Воспользовавшись любезной помощью наибольшего из известных на сегодня простых чисел, мы теперь можем построить и самое большое из известных совершенных чисел: (2>77 232 917 – 1) × 2>77 232 916.

Я не советовал бы вам пытаться сосчитать это число и проверить справедливость этого утверждения. Могу вас заверить, что сумма всех делителей этого чудовищного числа действительно равна самому числу. Говоря словами великого немецкого философа Иммануила Канта, мне пришлось устранить знание, чтобы дать место вере.

Ну хорошо. Теперь настало время отвлечься от мировых рекордов и заняться разработкой некоторых из пресловутых умственных мускулов.

Головоломки для тех, кто изучал математику

1). Докажите, что, если 2>P – 1 – простое число, то число (2>P – 1) × 2>P> – 1 должно быть совершенным.

2). 28 – треугольное число.



Являются ли все совершенные четные числа треугольными?

Знаменитый швейцарский математик Леонард Эйлер (с которым мы вскоре познакомимся) доказал, что верно и обратное. Другими словами, любое четное совершенное число имеет форму (2>P – 1) × 2>P> – 1, где P и 2>P – 1 – простые числа. Попробуйте свои силы и докажите это утверждение – или же найдите доказательство Эйлера


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Россия и Дон. История донского казачества 1549—1917

Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.


Император Алексей Ι Комнин и его стратегия

Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.