Восемь этюдов о бесконечности. Математическое приключение - [21]
Что же такое «число Мерсенна»? Возможно, правильнее было бы спросить иначе: кто такой Мерсенн? Числа вида 2>n – 1 называют числами Мерсенна в честь французского философа, богослова, музыковеда и математика Марена Мерсенна (1588–1648). Если вам кажется, что перечень его титулов недостаточно впечатляющ, позвольте мне добавить еще один: Мерсенн был первым человеком, измерившим скорость звука.
Все ли числа Мерсенна простые? Вовсе нет.
Например, 2>4 – 1 = 15 – не простое число (15 = 3 × 5).
Те, кто еще не забыл уроки старших классов (или, скажем, все еще учится в школе), вероятно, знают, что число Мерсенна не относится к простым, если простым числом не является его степенной показатель. Дело в том, что в этом случае такое число всегда можно разложить на два сомножителя. Механизм, лежащий в основе этого правила, любезно вызвалось проиллюстрировать на собственном примере число 2>6 – 1:
2>6 – 1 = 2 >2 × 3 – 1 = (2² – 1) (2 >4 + 2 ² + 1) = 3 × 21[18].
Другими словами, если степенной показатель – составное число, то соответствующее число Мерсенна всегда можно разложить на множители, что доказывает, что и оно будет числом составным. Для его разложения есть общая формула:
2>n >· >m – 1 = (2>n – 1) (1 + 2>n + 2²>n + … + 2>(>m> – 1) · >n).
Если эта формула не кажется вам особенно интересной, не беспокойтесь. Собственно говоря, сама формула не столь важна. Важен тот факт, что если в степенном показателе стоит не простое число, то и число Мерсенна с этим показателем не будет простым. Но если составной показатель гарантирует составное число Мерсенна, дальше, несомненно, естественно задать следующий вопрос: «Гарантирует ли простой показатель, что число Мерсенна будет простым?»
Попробуем проверить.
2² – 1, 2³ – 1, 2>5 – 1 и 2>7 – 1 – числа простые (соответственно 3, 7, 31 и 127). Пока что все хорошо. Сле- дующее простое число после 7 – это 11, но 2>11 – 1 – это не простое число: 2>11 – 1 = 2047 = 23 × 89.
Как ни печально, наличие простого числа в степенном показателе не гарантирует, что соответствующее число Мерсенна тоже будет простым числом. Будь это так, мы бы располагали простым способом находить все новые и новые простые числа. Например, можно было бы взять то колоссальное простое число, о котором мы говорили несколькими строчками выше, использовать его в качестве степенного показателя 2, вычесть единицу и получить новое – и еще более колоссальное – простое число. В его показателе стояло бы число, содержащее более 20 миллионов цифр. Подумайте только, каким ужасающе огромным было бы это число – оно выходило бы за пределы воображения простых смертных. Простое ли это число на самом деле? Я этого не знаю и не думаю, что когда-нибудь узнаю.
Мерсенн исследовал эти числа, носящие теперь его имя, в работе, опубликованной в 1644 г. Она вышла под величественным заголовком «Физико-математические размышления» (Cogitata Physico-Mathematica). Мерсенн проверил все простые степенные показатели до 257 и заключил, что числа вида 2>P – 1 должны быть простыми при P = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. Правильный перечень немного отличается от этого и выглядит так: P = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127.
Судите сами, можно ли считать процент точных попаданий Мерсенна впечатляющим.
Помните совершенные числа, с которыми мы познакомились в разделе, посвященном Пифагору? Если вы уже забыли про них, напомню, что совершенным называется число, сумма собственных делителей которого равна самому числу. Еще Евклид знал, что, если 2>P – 1 – простое число, то его умножение на 2>P> – 1 всегда дает совершенное число. Разумеется, Евклид не называл такие числа числами Мерсенна. В его время не только еще не родился сам Мерсенн, но даже не познакомились родители прародителей его прародителей.
Приведем несколько примеров. 2³ – 1 – простое число (7); следовательно, (2³ – 1) × 2² = 28 – число совершенное. Аналогичным образом, 2>5 – 1 – простое число (31); следовательно, (2>5 – 1) × 2>4 = 496 – число совершенное. Воспользовавшись любезной помощью наибольшего из известных на сегодня простых чисел, мы теперь можем построить и самое большое из известных совершенных чисел: (2>77 232 917 – 1) × 2>77 232 916.
Я не советовал бы вам пытаться сосчитать это число и проверить справедливость этого утверждения. Могу вас заверить, что сумма всех делителей этого чудовищного числа действительно равна самому числу. Говоря словами великого немецкого философа Иммануила Канта, мне пришлось устранить знание, чтобы дать место вере.
Ну хорошо. Теперь настало время отвлечься от мировых рекордов и заняться разработкой некоторых из пресловутых умственных мускулов.
1). Докажите, что, если 2>P – 1 – простое число, то число (2>P – 1) × 2>P> – 1 должно быть совершенным.
2). 28 – треугольное число.
Являются ли все совершенные четные числа треугольными?
Знаменитый швейцарский математик Леонард Эйлер (с которым мы вскоре познакомимся) доказал, что верно и обратное. Другими словами, любое четное совершенное число имеет форму (2>P – 1) × 2>P> – 1, где P и 2>P – 1 – простые числа. Попробуйте свои силы и докажите это утверждение – или же найдите доказательство Эйлера
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Книга для чтения содержит иллюстративные примеры к принципам подготовки курсовых работ, взятые из текстов курсовых работ по направлению «Международные отношения». Теоретическое объяснение сопровождается фрагментами, при анализе которых студенты учатся не только выявлять и употреблять клише научного стиля речи, но и продуцировать собственные тексты с опорой на имеющиеся образцы.
Сегодня искусственный интеллект меняет каждый аспект нашей жизни — ничего подобного мы не видели со времен открытия электричества. Но любая новая мощная технология несет с собой потенциальные опасности, и такие выдающиеся личности, как Стивен Хокинг и Илон Маск, не скрывают, что видят в ИИ возможную угрозу существованию человечества. Так стоит ли нам бояться умных машин? Матчи Гарри Каспарова с суперкомпьютером IBM Deep Blue стали самыми известными в истории поединков человека с машинами. И теперь он использует свой многолетний опыт противостояния с компьютерами, чтобы взглянуть на будущее искусственного интеллекта.
Самые необычные природные явления: брайникл, фата-моргана, прибрежное капучино, огни Святого Эльма, шаровая молния, огненная радуга, огненный вихрь, двояковыпуклые облака, красные приливы, световые столбы, волны-убийцы.
Нам предстоит познакомиться с загадочным племенем рудокопов, обитавших около 2–4 тысячелетий назад в бассейне реки Россь (Западная Белоруссия). Именно этот район называл М. В. Ломоносов как предполагаемую прародину племени россов. Новые данные позволяют более убедительно обосновать и развить эту гипотезу. Подобные знания помогают нам лучше понять некоторые национальные традиции, закономерности развития и взаимодействия культур, формирования национального характера, а также единство прошлого и настоящего, человека и природы.http://znak.traumlibrary.net.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.