Вначале была аксиома. Гильберт. Основания математики - [6]

Шрифт
Интервал

В 1895 году он кардинально изменил свою жизнь. В конфиденциальном письме его уведомили о назначении — по рекомендации Клейна — профессором престижного Гёттингенского университета, где до того работали два таких колосса математики, как Гаусс и Риман. Его не пришлось упрашивать, он переехал и никогда не покидал Гёттинген.

Между тем с теории инвариантов Гильберт уже переключился на теорию чисел — типично немецкую дисциплину с тех пор, как Гаусс опубликовал «Арифметические исследования» (1801) и назвал ее царицей математики. Немецкое математическое общество (основанное в 1890 году под председательством Георга Кантора (1845-1918)) поручило Гильберту и Минковскому разработать отчет о состоянии вопроса. Минковский сразу отказался, сославшись на занятость, зато Гильберт сделал намного больше, чем от него ожидали. Результатом была жемчужина математической литературы, ставшая в дальнейшем классикой в этой области знания, — Der Zahlbericht («Отчет о числах»), датированная 10 апреля 1897 года. В этой работе Гильберт объединил все имеющиеся данные, организовав их с новой точки зрения, переписал формулировки и доказательства. Он не только перераспределил детали головоломки, которую представляла собой алгебраическая теория чисел, но и заполнил лакуны оригинальными исследованиями. В предисловии к отчету он писал:

«Теория чисел — это здание редкой красоты и гармонии. [...] Целью данного отчета является описание с единой точки зрения результатов теории чисел с ее доказательствами, с ее логическим развитием, что должно приблизить тот день, когда достижения классиков в области теории чисел станут общим достоянием всех математиков».


ПЕРВАЯ НАУЧНАЯ РЕВОЛЮЦИЯ

Древние вавилонская и египетская цивилизации имели значительные знания в области геометрии. Но их, если можно так выразиться, «математика» не вышла за пределы технической стадии, основываясь на сборниках инструкций для решения повседневных проблем, которые были связаны с трудом землемеров и в которых едва прослеживалось понятие доказательства. Геометрические теоремы Фалеса Милетского (ок. 624 — ок. 546 до н.э.) заставили бы улыбнуться египетских землемеров ввиду их простоты и бесполезности («Диаметр делит круг на две равные части»). Однако мы говорим о первых теоремах, которые являются истинными спустя более чем 2000 лет. Фалесу удалось измерить высоту пирамиды Хеопса с использованием простого правила пропорциональности.

Пифагору также удалось установить логическую связь с наследием вавилонян и египтян. Под руководством Платона Афинская академия систематизировала пифагорейскую математику, особенно заметен вклад Теэтета (ок. 417 — ок. 369 до н.э.) и Евдокса (ок. 390 — ок. 337 до н.э.). Первому приписывают теорему, гласящую, что существует только пять правильных многогранников, пять Платоновых тел. Тогда же геометров того времени завораживали три классические проблемы: трисекция угла, квадратура круга и удвоение куба. Перейдя из Афинской академии в Александрийский мусейон, мы встретились бы с Евклидом, работа которого (наряду с работой Аполлония и Архимеда) завершает золотую эпоху греческой геометрии.

Идеализированный портрет Евклида. Юстус ван Гент, 1474 год.


«Отчет о числах» перенес Гильберта в авангард европейской математики. Конечно, анализируя его раннюю математическую деятельность, можно подумать, будто это отличный исследователь, но в узкой сфере знаний. Почти невозможно было предвидеть дальнейшее восхождение Гильберта на вершину математического Олимпа и общую убежденность в том, что, как и Пуанкаре, он является одним из последних математиков-универсалов, ориентирующихся во всех областях науки, включая его следующее завоевание — геометрию. Но чтобы показать вклад Гильберта в этой области, нужно вспомнить об исторической подоплеке, о том толчке, который XIX век обеспечил геометрии, о том, как открытие неевклидовых геометрий изменило аксиоматический метод.


НЕЕВКЛИДОВЫ ГЕОМЕТРИИ

Греческая геометрия была краеугольным камнем математики в течение нескольких веков. В «Началах» — трактате, восходящем к 300 году до н.э., — Евклид предложил аксиоматическое, чрезвычайно упорядоченное и структурированное представление о корпусе знаний, переданных математиками школ Пифагора и Платона. Его изложение, на которое повлияли размышления Аристотеля о логике, обладало очень примечательной характеристикой — чрезвычайной строгостью при доказательстве каждой теоремы.

«Начала» состоят из 13 книг и содержат 465 геометрических пропозиций, от базовых принципов до самых проработанных выводов. Евклид начинает Книгу I списком из 23 определений основных геометрических терминов (точка, прямая, треугольник, окружность и так далее). Например: «Точка есть то, что не имеет частей». Затем Евклид приводит пять постулатов, на которых базируется вся его геометрия. Эти постулаты представлены без доказательства и обоснования, их просто нужно принять как предпосылки к изложенному дальше. Например: «Между двумя любыми точками можно провести прямую линию». После определений и геометрических постулатов Евклид уточняет ряд общих понятий и неоспоримых истин. Например: «Целое больше части» или «Равные одному и тому же равны и между собой». С этого момента Евклид начинает углубляться в предмет. Так, в первой пропозиции «Начал» показано, как построить равносторонний треугольник на заданном линейном отрезке.


Рекомендуем почитать
Русская книга о Марке Шагале. Том 2

Это издание подводит итог многолетних разысканий о Марке Шагале с целью собрать весь известный материал (печатный, архивный, иллюстративный), относящийся к российским годам жизни художника и его связям с Россией. Книга не только обобщает большой объем предшествующих исследований и публикаций, но и вводит в научный оборот значительный корпус новых документов, позволяющих прояснить важные факты и обстоятельства шагаловской биографии. Таковы, к примеру, сведения о родословии и семье художника, свод документов о его деятельности на посту комиссара по делам искусств в революционном Витебске, дипломатическая переписка по поводу его визита в Москву и Ленинград в 1973 году, и в особой мере его обширная переписка с русскоязычными корреспондентами.


Дуэли Лермонтова. Дуэльный кодекс де Шатовильяра

Настоящие материалы подготовлены в связи с 200-летней годовщиной рождения великого русского поэта М. Ю. Лермонтова, которая празднуется в 2014 году. Условно книгу можно разделить на две части: первая часть содержит описание дуэлей Лермонтова, а вторая – краткие пояснения к впервые издаваемому на русском языке Дуэльному кодексу де Шатовильяра.


Скворцов-Степанов

Книга рассказывает о жизненном пути И. И. Скворцова-Степанова — одного из видных деятелей партии, друга и соратника В. И. Ленина, члена ЦК партии, ответственного редактора газеты «Известия». И. И. Скворцов-Степанов был блестящим публицистом и видным ученым-марксистом, автором известных исторических, экономических и философских исследований, переводчиком многих произведений К. Маркса и Ф. Энгельса на русский язык (в том числе «Капитала»).


Страсть к успеху. Японское чудо

Один из самых преуспевающих предпринимателей Японии — Казуо Инамори делится в книге своими философскими воззрениями, следуя которым он живет и работает уже более трех десятилетий. Эта замечательная книга вселяет веру в бесконечные возможности человека. Она наполнена мудростью, помогающей преодолевать невзгоды и превращать мечты в реальность. Книга рассчитана на широкий круг читателей.


Джоан Роулинг. Неофициальная биография создательницы вселенной «Гарри Поттера»

Биография Джоан Роулинг, написанная итальянской исследовательницей ее жизни и творчества Мариной Ленти. Роулинг никогда не соглашалась на выпуск официальной биографии, поэтому и на родине писательницы их опубликовано немного. Вся информация почерпнута автором из заявлений, которые делала в средствах массовой информации в течение последних двадцати трех лет сама Роулинг либо те, кто с ней связан, а также из новостных публикаций про писательницу с тех пор, как она стала мировой знаменитостью. В книге есть одна выразительная особенность.


Ротшильды. История семьи

Имя банкирского дома Ротшильдов сегодня известно каждому. О Ротшильдах слагались легенды и ходили самые невероятные слухи, их изображали на карикатурах в виде пауков, опутавших земной шар. Люди, объединенные этой фамилией, до сих пор олицетворяют жизненный успех. В чем же секрет этого успеха? О становлении банкирского дома Ротшильдов и их продвижении к власти и могуществу рассказывает израильский историк, журналист Атекс Фрид, автор многочисленных научно-популярных статей.