Вначале была аксиома. Гильберт. Основания математики - [7]

Шрифт
Интервал

В то время как общие понятия имеют чисто логическое происхождение, постулаты (или аксиомы) обладают геометрической природой. Они уточняют правила работы с математическими объектами, которые Евклид определил до этого. Эти пять постулатов, или аксиом, следующие.

1. От всякой точки до всякой точки можно провести прямую.

2. Ограниченную прямую можно непрерывно продолжать по прямой.

3. Из всякого центра всяким раствором может быть описан круг.

4. Все прямые углы равны между собой.

Иллюстрация пятого постулата Евклида.


5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых (см. рисунок на предыдущей странице).

В отличие от прочих, пятый постулат Евклида довольно неочевиден, и это привело к тому, что многие математики — например, Птолемей (II век), Джон Валлис (1616-1703) и Иероним Саккери (1667-1733) — безуспешно пытались доказать его через остальные постулаты. В попытках доказательства каждый из них превосходил другого по утонченности и находчивости. Но единственным, чего они добились, стали формулировки, равносильные пятому постулату. Одна из них — знаменитая аксиома параллельных прямых. «Через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной» (см. рисунок выше). Другая версия провозглашает, что «Сумма углов треугольника равна 180°». Однако историю о пятом постулате, или аксиоме параллельных прямых, ждал удивительный финал.

Иллюстрация аксиомы параллельных прямых.


Как математикам удалось освободиться от цепей евклидовой геометрии? Более 2000 лет они были убеждены, что это единственно возможная геометрия, единственное убедительное описание мира, поскольку изучалось только одно физическое пространство. Но в XIX веке открытие различных геометрий (в которых не выполнялась аксиома параллельных прямых) усилило их тревогу и заставило признать ошибку. Этот животрепещущий вопрос касался формы мира (если он действительно имеет какую-то форму).

Первой неевклидовой геометрией, с которой смирились математики, оказалась, как ни странно, старая знакомая — проективная геометрия. Она начала свой путь в эпоху Возрождения, когда художники заинтересовались проецированием пространства на холст. Тогда было открыто одно из отличительных свойств проективной геометрии (которое радикально отличает ее от неевклидовой): две прямые, которые в трехмерном пространстве представлены как параллельные, на двумерном холсте предстают как пара прямых, пересекающихся на линии горизонта, в бесконечности. Точно так же железнодорожные рельсы, параллельные по всей длине, на фотографиях кажутся пересекающимися в точке схода. Так что в проективной геометрии две любые точки всегда пересекаются: либо в конкретной точке, либо в бесконечности. Следовательно, проективная геометрия противоречит аксиоме параллельных прямых, поскольку через точку, не лежащую на данной прямой, не проходит ни одной прямой, параллельной первой.

В начале XIX века в проективной геометрии наметился прорыв, и совершил его французский математик Виктор Понселе (1788-1867). Этот наполеоновский офицер, оказавшись в российском плену, посвятил себя усовершенствованию идей в данной области и по возвращении домой опубликовал «Трактат о проективных свойствах фигур» (1822). В нем Понселе ввел понятие проективной геометрии как сферы знания, рассматривающей свойства фигур, которые сохраняются при проецировании, то есть свойств, общих для фигур с их тенями и проекциями. Эти свойства включают в себя отношения принадлежности, но не отношения расстояния или размера. Так, если три точки лежат на одной прямой, при проецировании они на одной прямой и остаются, но очень вероятно, что расстояние между ними изменится. Точно так же тень, которую отбрасывает каждый из нас, не равна нам по размеру. Через некоторое время немецкий математик Юлиус Плюккер (1801-1868) включил в проективную геометрию координаты, что позволило ему алгебраизировать ее и доказать многочисленные результаты с аналитической точки зрения.

В результате проективная геометрия составляла особый случай неевклидовой геометрии. Аксиома параллельных прямых не выполнялась (поскольку на проективной плоскости не существовало параллельных прямых), но проективная геометрия отрицала не только аксиому параллельных прямых, но и параметры углов и расстояние (поскольку при проецировании они не сохраняются). Не выполнялся не только пятый, но и четвертый постулаты Евклида (об углах). Поэтому математики не стали рассматривать проективную геометрию как настоящую неевклидову геометрию.

Казавшаяся недостижимой цель заключалась в том, чтобы с нуля построить новую геометрию, которая выполняла бы евклидовы аксиомы, кроме аксиомы параллельных прямых. Поскольку она отрицалась, оставалось два пути: либо отрицать существование параллельных прямых («не существует параллельных прямых»), либо отрицать единственность прямой, параллельной данной, проходящей через точку, не лежащую на ней («существует более одной параллельной прямой»).


Рекомендуем почитать
Русская книга о Марке Шагале. Том 2

Это издание подводит итог многолетних разысканий о Марке Шагале с целью собрать весь известный материал (печатный, архивный, иллюстративный), относящийся к российским годам жизни художника и его связям с Россией. Книга не только обобщает большой объем предшествующих исследований и публикаций, но и вводит в научный оборот значительный корпус новых документов, позволяющих прояснить важные факты и обстоятельства шагаловской биографии. Таковы, к примеру, сведения о родословии и семье художника, свод документов о его деятельности на посту комиссара по делам искусств в революционном Витебске, дипломатическая переписка по поводу его визита в Москву и Ленинград в 1973 году, и в особой мере его обширная переписка с русскоязычными корреспондентами.


Дуэли Лермонтова. Дуэльный кодекс де Шатовильяра

Настоящие материалы подготовлены в связи с 200-летней годовщиной рождения великого русского поэта М. Ю. Лермонтова, которая празднуется в 2014 году. Условно книгу можно разделить на две части: первая часть содержит описание дуэлей Лермонтова, а вторая – краткие пояснения к впервые издаваемому на русском языке Дуэльному кодексу де Шатовильяра.


Скворцов-Степанов

Книга рассказывает о жизненном пути И. И. Скворцова-Степанова — одного из видных деятелей партии, друга и соратника В. И. Ленина, члена ЦК партии, ответственного редактора газеты «Известия». И. И. Скворцов-Степанов был блестящим публицистом и видным ученым-марксистом, автором известных исторических, экономических и философских исследований, переводчиком многих произведений К. Маркса и Ф. Энгельса на русский язык (в том числе «Капитала»).


Страсть к успеху. Японское чудо

Один из самых преуспевающих предпринимателей Японии — Казуо Инамори делится в книге своими философскими воззрениями, следуя которым он живет и работает уже более трех десятилетий. Эта замечательная книга вселяет веру в бесконечные возможности человека. Она наполнена мудростью, помогающей преодолевать невзгоды и превращать мечты в реальность. Книга рассчитана на широкий круг читателей.


Джоан Роулинг. Неофициальная биография создательницы вселенной «Гарри Поттера»

Биография Джоан Роулинг, написанная итальянской исследовательницей ее жизни и творчества Мариной Ленти. Роулинг никогда не соглашалась на выпуск официальной биографии, поэтому и на родине писательницы их опубликовано немного. Вся информация почерпнута автором из заявлений, которые делала в средствах массовой информации в течение последних двадцати трех лет сама Роулинг либо те, кто с ней связан, а также из новостных публикаций про писательницу с тех пор, как она стала мировой знаменитостью. В книге есть одна выразительная особенность.


Ротшильды. История семьи

Имя банкирского дома Ротшильдов сегодня известно каждому. О Ротшильдах слагались легенды и ходили самые невероятные слухи, их изображали на карикатурах в виде пауков, опутавших земной шар. Люди, объединенные этой фамилией, до сих пор олицетворяют жизненный успех. В чем же секрет этого успеха? О становлении банкирского дома Ротшильдов и их продвижении к власти и могуществу рассказывает израильский историк, журналист Атекс Фрид, автор многочисленных научно-популярных статей.