Вначале была аксиома. Гильберт. Основания математики - [19]
Довольно долгое время уравнения (алгебраические) отвечали требованию вычислять неизвестные числа, например корни многочлена. Но в математике нередко возникают качественно другие проблемы: те, в которых неизвестное — это не число, а функция, выражающая отношение между различными переменными (как в случае с движением планет — зависимость пространственных координат от времени). Особый класс здесь — так называемые дифференциальные уравнения, определяющие неизвестную функцию на основе одного или нескольких уравнений, в которых участвуют производные функции.
Основав исчисление (дифференциальное и интегральное), Ньютон сформулировал законы физики в том виде, который связывал между собой физические величины и скорости изменения. То есть пространство, пройденное движущимся телом с его скоростью, и скорость движущегося тела с его ускорением. Итак, законы физики оказались выраженными через дифференциальные уравнения, при этом дифференциалы и производные были мерами скорости изменения. Производная функции показывает, как изменяется значение функции, если она возрастает, убывает или остается постоянной. Ускорение, например, измеряет изменения скорости движущегося тела, вариацию скорости во времени, поскольку частное дифференциалов скорости и времени есть производная скорости относительно времени:
а = dv/dt
Однако решение дифференциальных уравнений, как и алгебраических, не всегда оказывается простым, вернее никогда. Если неизвестная функция зависит от единственной переменной, они называются обыкновенными дифференциальными уравнениями. Например, производная от функции синуса у = sin х равна у’ = cos х, где у’ обозначает первую производную. Эта последняя функция может быть дифференцирована, в свою очередь, для получения у" = -sin х> из чего можно вывести дифференциальное уравнение у" = -у. Это — дифференциальное уравнение второго порядка, поскольку появляется вторая производная.
Другой пример дифференциального уравнения второго порядка — второй закон Ньютона: F = m x а («сила равна произведению массы на ускорение»),
а = dv/dt = d²x /dt²,
где ускорение — это первая производная от скорости, но также вторая производная от положения, если x(t) обозначает положение движущегося тела в зависимости от времени.
Обратная ситуация — если неизвестная функция зависит от более чем одной переменной и появляются производные относительно этих переменных: это называется уравнениями в частных производных. Предположим, объем газа V — это функция от его температуры Т и давления на него Р, то есть V(T,Р). Когда Тили Р изменяются, V тоже изменяется. Производная V(T, Р) относительно Т называется частной производной относительно Т и записывается как
∂V(T,Р)/∂T.
Точно так же
∂V(T,Р)/∂P
является частной производной относительно Р. Как и в случае с обыкновенными производными, существуют вторая, третья и так далее частные производные; так, в качестве примера
∂2V(T,Р)/∂P2
представляет собой вторую частную производную относительно Р. Но дифференциальные уравнения, в которых участвуют частные производные, имеют особенные черты, принципиально отличающие их от обыкновенных. В изучении естественных явлений уравнения в частных производных появляются так же часто, как и обыкновенные дифференциальные уравнения, но обычно их намного сложнее решать.
В XVIII веке изучение физического явления в сущности было примерно тем же самым, что и нахождение дифференциального уравнения, которое им управляет. Так, после открытия Ньютоном знаменитого дифференциального уравнения «сила равна произведению массы на ускорение», которое управляет движением систем точек и твердых упругих тел, швейцарский математик Леонард Эйлер (1707-1783) сформулировал систему уравнений в частных производных, описывающую движение сплошных сред (воды, воздуха и других флюидов), не обладающих вязкостью. Через некоторое время французский математик Жозеф-Луи Лагранж (1736-1813) сосредоточился на музыке, на уравнении в частных производных, которое показывает распространение звуковых волн. Позже Жан-Батист Фурье (1768-1830) обратился к потоку тепла, предложив другое уравнение в частных производных, описывающее его распространение. В разгаре XIX века уравнения Навье — Стокса описало движение вязких флюидов, а уравнения Максвелла — электромагнетизм. Вся природа — твердые тела, флюиды, звук, тепло, свет, электричество — оказалась смоделированной посредством уравнений в частных производных. Но одно дело — найти уравнения рассматриваемого явления, а другое — решить их.
Физика слишком сложна для физиков.
Давид Гильберт
Парадигматические уравнения в частных производных — это три уравнения, полученные в области математической физики: уравнение волн, уравнение тепла и уравнение Лапласа.
Прежде чем рассмотреть последнее, введем обозначение, которое чрезвычайно упрощает его запись: лапласианом функции u = u(х,y,z,t) от пространственных координат и времени называют сумму следующих производных относительно х,y,z:
∆u = ∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²
Эту группу частных дифференциалов лапласианом назвал Джеймс Клерк Максвелл (1831-1879), хотя обозначение заглавной греческой буквой дельта восходит к трактату 1833 года.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Перед вами – яркий и необычный политический портрет одного из крупнейших в мире государственных деятелей, созданный Томом Плейтом после двух дней напряженных конфиденциальных бесед, которые прошли в Сингапуре в июле 2009 г. В своей книге автор пытается ответить на вопрос: кто же такой на самом деле Ли Куан Ю, знаменитый азиатский политический мыслитель, строитель новой нации, воплотивший в жизнь главные принципы азиатского менталитета? Для широкого круга читателей.
Уникальное издание, основанное на достоверном материале, почерпнутом автором из писем, дневников, записных книжек Артура Конан Дойла, а также из подлинных газетных публикаций и архивных документов. Вы узнаете множество малоизвестных фактов о жизни и творчестве писателя, о блестящем расследовании им реальных уголовных дел, а также о его знаменитом персонаже Шерлоке Холмсе, которого Конан Дойл не раз порывался «убить».
Это издание подводит итог многолетних разысканий о Марке Шагале с целью собрать весь известный материал (печатный, архивный, иллюстративный), относящийся к российским годам жизни художника и его связям с Россией. Книга не только обобщает большой объем предшествующих исследований и публикаций, но и вводит в научный оборот значительный корпус новых документов, позволяющих прояснить важные факты и обстоятельства шагаловской биографии. Таковы, к примеру, сведения о родословии и семье художника, свод документов о его деятельности на посту комиссара по делам искусств в революционном Витебске, дипломатическая переписка по поводу его визита в Москву и Ленинград в 1973 году, и в особой мере его обширная переписка с русскоязычными корреспондентами.
Настоящие материалы подготовлены в связи с 200-летней годовщиной рождения великого русского поэта М. Ю. Лермонтова, которая празднуется в 2014 году. Условно книгу можно разделить на две части: первая часть содержит описание дуэлей Лермонтова, а вторая – краткие пояснения к впервые издаваемому на русском языке Дуэльному кодексу де Шатовильяра.
Книга рассказывает о жизненном пути И. И. Скворцова-Степанова — одного из видных деятелей партии, друга и соратника В. И. Ленина, члена ЦК партии, ответственного редактора газеты «Известия». И. И. Скворцов-Степанов был блестящим публицистом и видным ученым-марксистом, автором известных исторических, экономических и философских исследований, переводчиком многих произведений К. Маркса и Ф. Энгельса на русский язык (в том числе «Капитала»).