Посмотрим, какие инструкции дает Руководство по летной эксплуатации вертолета Ми-14 (этот вертолет часто выполняет поисково-спасательные работы, то есть полеты на малых высотах и скоростях) командиру экипажа в случае отказа двух двигателей. Пункт 6.2.2 гласит, что при отказе двигателей на высоте менее 100 м и скорости менее 80 км/ч необходимо:
— немедленно перевести рычаг общего шага несущего винта вниз до упора и, если позволяет высота, перевести вертолет в разгон до скорости 50–60 км/ч;
— дать команду борттехнику закрыть стоп-краны и пожарные краны, выключить перекачивающие и подкачивающие насосы;
— с высоты 20–15 м выполнить гашение вертикальной скорости путем быстрого и непрерывного увеличения общего шага с максимально возможным темпом (10-127с);
— после приземления плавно опустить рычаг шаг-газа вниз до упора с одновременной отдачей ручки управления от себя на 1/3-1/4 хода.
Рис. 1. Опасная зона
Обратим особое внимание на слова «если позволяет высота». А если нет? Как все-таки помочь экипажу совершить безаварийную посадку?
Можно, допустим, оснастить все вертолеты системой аварийного покидания (но как быть пассажирам, находящимся на борту?) или априори считать, что риск — составная и неотъемлемая часть работы летчика. А можно запустить в расчетный момент расположенные на лопастях НВ вертолета мoш^^ыe и компактные твердотопливные газогенераторы (фактически малогабаритные ракетные двигатели твердого топлива — РДГГ, способные вращать НВ вместо отказавших двигателей и раскрыть на несколько секунд с их помощью над вертолетом тормозной газовый «парашют»). Примеры использования РДТТ на летательных аппаратах есть. РДГГ входят в систему спасения экипажа космического корабля «Союз», буксировочного двухрежимного двигателя системы аварийного покидания вертолета Ка-50.
Распространим известную идею струйно- импульсной механизации (СИМ) крыла самолета на лопасть вертолета. Суть идеи состоит в том, что «в случае струйного закрылка в узкую щель, расположенную вдоль задней кромки крыла, выдувается струя газа под некоторым углом 0 к хорде крыла. За счет ее эжектирующего действия возрастают скорость и разрежение на верхней поверхности крыла. Струя играет роль жидкого закрылка, тормозит поток под крылом и увеличивает давление на нижней поверхности крыла. В результате его подъемная сила возрастает. Кроме того, при наличии газовой струи возникает реактивная сила, проекция которой также увеличивает подъемную силу.
Воплотить эту идею на вертолете много сложнее, чем на самолете, — лопасть чрезвычайно важный элемент конструкции и нарушать ее продуманную «целостность» без особой надобности никто не будет. Надо доказать, что сделать это все-таки возможно, поскольку наличие газового «парашюта» увеличивает шанс на безаварийную посадку.
Ближайшим аналогом вертолета, подтверждающим плодотворность идеи привлечения управляемой циркуляции на НВ вертолета, является конвертоплан фирмы «Локхид» с преобразуемым Х-образным четырехлопастным винтом-крылом X-wind. На этом аппарате при остановке винта в полете передняя кромка лопасти становится задней, то есть меняется направление потока на профиле лопасти (крыла). Поэтому в сечении лопасти применяется симметричный профиль с системой управления пограничным слоем (УПС): выдув воздуха на верхнюю поверхность лопасти может производиться из любого щелевого сопла, как со стороны передней, так и со стороны задней кромки, в зависимости от направления потока.
Получение эффекта суперциркуляции (при наличии у летательного аппарата реактивных струй) зафиксировано в значимых для практических расчетов величинах и при продувке корпусов моделей перспективных самолетов с плоскими соплами двигателей. Исследования показывают, что эффективность СИМ зависит от ряда факторов; угла выдува струи 6, места выдра и значения коэффициента реакции С>μ:
С>μ — 2·mV>вс/ρ·V²·S,
где m — секундный массовый расход воздуха; V>вс— скорость воздушной струи; ρ — плотность воздуха; V — скорость полета; S — площадь крыла.
1 — съемный газогенератор; 2-лопасть; 3 — гибкий газовый канал; 4 — дискретный щелевой газоотвод; 5 — газовые струи (торцевые и вдоль задней кромки лопасти)
Рис. 3. Струйно-импульсная механизация лопасти НВ вертолета
Рис. 2. Численные зависимости применения СИМ крыла самолета
Рассмотрим зависимости С>y(α) для самолета с треугольным крылом при выдуве струи по его задней кромке: θ=30° (рис. 2).
Из рис. 2 видно, что достигаемое ΔС>y ~ 0,49 при = 0,5 ограничено, в основном, только возможностями по отбору воздуха от компрессора двигателя самолета, то есть значением коэффициента С>µ.
Если сравнить эффективность механического щитка крыла при углах отклонения 20° (ΔС>y = 0,5) и 60° (ΔС>y = 1,0) с эффективностью струйного закрылка = 0,49, можно видеть, что струйная механизация по этому показателю особо не уступает механической, да еще и создает реактивную силу, кстати, больше необходимую НВ вертолета, чем крылу самолета. Особенно востребованной для НВ представляется составляющая реактивной силы, действующая в плоскости его вращения и способная сдержать интенсивное падение оборотов НВ при отказе двигателей (или даже восстановить их до исходных и удерживать несколько дополнительных секунд, порой достаточных для безопасного завершения полета в аварийной ситуации).