В поисках бесконечности - [48]

Шрифт
Интервал

Рис. 30


Несколько удивительных примеров кривых и областей на плоскости построил голландский математик Брауэр[95]. Мы расскажем сейчас об одном из самых удивительных среди этих примеров. Нарисуем карту какой-нибудь страны и сопредельных с ней стран. Почти каждая точка границы этой страны принадлежит двум и только двум странам: данной и одной из сопредельных. Поэтому в каждой точке границы стоят два пограничника: один из этой страны, а другой — из сопредельной. Есть на карте несколько точек, где сходятся три страны (рис. 30). В таких точках стоят уже три пограничника. Но таких мест на карте лишь конечное число. И кажется совершенно очевидным, что такие точки не могут заполнить всю границу страны, то есть что не может быть трех областей (трех стран), имеющих одну и ту же общую границу. Иными словами, кажется очевидным, что три пограничника из трех разных стран не могут стоять в каждой точке границы.

А Брауэр построил такие три области. Чтобы понять этот пример, представим себе, что в океане есть остров, на котором находятся два озера с пресной водой. Только в одном озере вода холодная, а в другом — теплая. Теперь проведем следующие ирригационные работы. В течение первых суток проведем каналы от океана и от обоих озер так, чтобы каждый из этих каналов был "слепым" (то есть только заливом соответствующего водоема), чтобы эти каналы нигде не соприкасались друг с другом и чтобы в результате расстояние каждой точки суши до океанских вод, а также до вод обоих озер было меньше 1 километра (рис. 31).

Рис. 31


В следующую половину суток продолжим эти каналы так, что они по-прежнему остаются "слепыми" и не соприкасаются между собой, а расстояние от каждой точки суши до любого из трех каналов становится меньше, чем >1/>2 километра. При этом, конечно, каналы должны стать более узкими, чем ранее. В следующую четверть суток каналы продолжаются дальше так, чтобы каждая точка суши отстояла от любого канала меньше, чем на >1/>4 километра, и т. д. С каждым шагом каналы становятся все извилистее и извилистее, все уже и уже. Через двое суток такой работы весь остров будет пронизан этими тремя каналами и превратится в канторову линию. Стоя в любой точке этой линии, можно зачерпнуть, по желанию, соленой, теплой пресной или холодной пресной воды. При этом воды не смешиваются друг с другом, Если бы вместо океана и озер мы взяли три страны, то получили бы ту удивительную картину, о которой говорили вначале,- в каждой точке границы можно поставить трех пограничников — по одному от каждой страны.

"Недиссертабельная" тема.

У канторова определения линии был один недостаток — оно совсем не годилось для пространственных кривых. А уж что такое поверхность в пространстве, определить таким образом было весьма сложно, так как и кривые, и поверхности являются континуумами без внутренних точек. Эту задачу — выяснить, чем отличаются в пространстве кривые от поверхностей,- поставил летом 1921 г. Д. Ф. Егоров перед П. С. Урысоном[96] (как видно, он больше думал о математической значительности проблемы, чем, как теперь иногда говорят, о "диссертабельности" темы — задача-то была одной из труднейших!).

Вскоре Урысон понял, что задача Егорова лишь частный случай гораздо более общей проблемы: что такое размерность геометрической фигуры, то есть сколько измерений она имеет, почему надо говорить, что отрезок или окружность имеют размерность 1, квадрат — размерность 2, а куб или шар — размерность 3? Вот как вспоминает об этом периоде жизни П. С. Урысона его ближайший друг П. С. Александров: "...Все лето 1921 года прошло в напряженных попытках найти "настоящее" определение (размерности), причем П. С. переходил от одного варианта к другому, постоянно строя примеры, показывавшие, почему тот или иной вариант надо отбросить. Это были два месяца действительно всепоглощающих размышлений. Наконец, в одно утро в конце августа II. С. проснулся с готовым, окончательным и всем теперь хорошо известным индуктивным определением размерности... В то же утро во время купания в Клязьме П. С. Урысон рассказал мне свое определение размерности и тут же, во время этого разговора, затянувшегося на несколько часов, набросал план всего построения теории размерности с целым рядом теорем, бывших тогда гипотезами, за которые неизвестно было, как и взяться, и которые затем доказывались одна за другой в течение последующих месяцев. Никогда потом я не был участником или свидетелем математического разговора, который состоял бы из такого сплошного потока новых мыслей, как в то августовское утро. Вся набросанная тогда программа полностью осуществилась в течение зимы 1921/22 года; к весне 1922 года вся теория размерности была готова...". \

Основная идея определения размерности по Урысону заключается в следующем. Чтобы отделить часть линии от всей остальной линии обычно достаточно двух или нескольких точек (на рис. 32 часть четырехлепестковой розы, содержащая центр, отделяется от остальной розы восемью точками). Но часть поверхности уже невозможно отделить от всей поверхности несколькими точками — для этого обязательно потребуется целая линия: сколько бы точек ни взять на поверхности, их всегда можно обойти. Точно так же часть трехмерного пространства отделяется от всего остального пространства поверхностью.


Рекомендуем почитать
Знание-сила, 2009 № 09 (987)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 11 (977)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 02 (968)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2007 № 02 (956)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 04 (862)

Ежемесячный научно-популярный н научно-художественный журнал для молодежи.


Популярная палеогеография

Автор рассказывает о достижениях палеогеографии — науки, изучающей физико-географические условия минувших геологических эпох. История Земли и жизни на ней, от самого образования планеты до современности; дрейф материков и новая глобальная тектоника; процессы горообразования и климат прошлых эпох — вот только некоторые из тем, которым посвящена эта увлекательная книга.


Теория адекватного питания и трофология

Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.


Естественные технологии биологических систем

Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.


Океанские дороги человечества

В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.