В поисках бесконечности - [50]

Шрифт
Интервал

После смерти П. С. Урысона остались многочисленные черновики и наброски неопубликованных результатов. Его ближайший друг (и соавтор по многим работам) Павел Сергеевич Александров, отложив на некоторое время свои исследования, подготовил эти работы к печати, сделав тем самым и эти результаты Урысона достоянием всех математиков. В настоящее время теория размерности стала важной главой математики.

Глава 4. В поисках абсолюта

Новые осложнения.

Успехи, достигнутые в исследовании функций и линий при помощи теории множеств, сделали ее полноправным членом семьи математических наук. Это признание было зафиксировано на состоявшемся в 1897 г. Первом Международном конгрессе математиков, проходившем в швейцарском городе Цюрихе. В докладах виднейших специалистов по математическому анализу А. Гурвица[97] и Ж. Адамара[98] были показаны самые разнообразные применения множеств, вскрыта их связь с общей теорией так называемых аналитических функций. На проведенном через три года Втором Международном математическом конгрессе Давид Гильберт поставил среди 23 важнейших нерешенных проблем математики и вопросы, связанные с теорией множеств. Высоко оценил работы Кантора в своем выступлении на том же конгрессе Анри Пуанкаре. Говоря о роли интуиции и логики в математике, он сказал, что в теории множеств математика обрела совершенно прочный и надежный фундамент и теперь в математике остаются только натуральные числа и конечные или бесконечные системы таких чисел. По его мнению, математика стала полностью арифметизированной и в ней, наконец, достигнута абсолютная строгость.

При такой оценке теории множеств, данной ведущими учеными того времени, неудивительно, что на ее создателя Георга Кантора дождем посыпались академические награды — он был избран почетным членом Лондонского королевского общества, членом-корреспондентом Института науки, литературы и искусства в Венеции, почетным доктором математики университета в Христиании (ныне Осло) и т. д.

Но английская пословица гласит, что "каждая семья имеет свой скелет в шкафу" (то есть свои тайны, до поры до времени неизвестные окружающим). Таким скелетом, вываливающимся из шкафа в самые неподходящие моменты, была на протяжении многих тысячелетий развития математики противоречивость самого понятия бесконечности. С тех пор, как эта противоречивость была осознана Зенопом, делались неоднократные попытки снова привести все в норму, причем каждый раз шкаф пытались сделать все прочнее и надежнее. После первой их них, сделанной Евдоксом и Евклидом, прошло два тысячелетия, прежде чем Вейерштрассу и Кантору пришлось предпринимать вторую попытку. И, как мы видели, самые лучшие математики той эпохи считали, что достигнут полный успех. Однако "скелет" оказался на этот раз весьма беспокойным и вновь вывалился из шкафа уже через два с небольшим десятилетия. Как писал по этому поводу Давид Гильберт, "произошло нечто, аналогичное тому, что случилось при развитии исчисления бесконечно малых. На радостях по поводу новых богатых результатов стали явным образом недостаточно критически относиться к законности умозаключений; поэтому уже при простом образовании понятий и применении умозаключений, постепенно ставших обычными, выявились противоречия, сначала единичные, а потом все более серьезные... На учение Кантора с различных сторон были произведены бурные нападки. Контрдвижение было столь стремительно, что общеупотребительнейшие и плодотворнейшие понятия математики, простейшие и важнейшие ее умозаключения оказались под угрозой и применение их запрещалось".

Первым сигналом о неблагополучии в самих основах теории множеств оказался парадокс, открытый впервые самим Кантором в 1895 г. и опубликованный два года спустя итальянским математиком Бурали-Форти[99]. Речь шла о множестве, составленном из всех трансфинитных чисел. По своему определению оно было не хуже, чем любое иное множество, так как являлось многим мыслимым как единое. Но у этого множества оказался существеннейший недостаток. Оно само вполне упорядочено и потому должно выражаться каким-то трансфинитным числом Q. Но тогда Q должно было оказаться больше всех трансфинитных чисел, а потому и больше самого себя, что, очевидно, невозможно.

Как выяснилось позднее, столь же противоречиво и множество, составленное из всех множеств. Ведь этому множеству должны принадлежать все его подмножества, что невозможно, так как множество всех подмножеств любого множества имеет большую мощность, чем само это множество.

Еще один удивительный пример противоречиво определенного множества опубликовал в 1903 г. Бертран Рассел[100]. Как правило, множества не являются своими собственными элементами (например, множество всех натуральных чисел не является натуральным числом, множество всех треугольников не является треугольником и т. д.).

Однако бывают и такие множества, которые содержат себя в качестве одного из своих элементов. Скажем, множество абстрактных понятий само является абстрактным понятием (не правда ли?). Так как такие множества рассматриваются редко, назовем их экстраординарными, а все остальные множества —


Рекомендуем почитать
Знание-сила, 2009 № 09 (987)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 11 (977)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 02 (968)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2007 № 02 (956)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 04 (862)

Ежемесячный научно-популярный н научно-художественный журнал для молодежи.


Популярная палеогеография

Автор рассказывает о достижениях палеогеографии — науки, изучающей физико-географические условия минувших геологических эпох. История Земли и жизни на ней, от самого образования планеты до современности; дрейф материков и новая глобальная тектоника; процессы горообразования и климат прошлых эпох — вот только некоторые из тем, которым посвящена эта увлекательная книга.


Теория адекватного питания и трофология

Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.


Естественные технологии биологических систем

Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.


Океанские дороги человечества

В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.