Учебное пособие по курсу «Нейроинформатика» - [14]

Шрифт
Интервал

>m — матрицу Грама для множества из m векторов; через E>m — единичную матрицу размерности m×m. При обращении матриц методом Гаусса используется следующая процедура:

1 .Запишем матрицу размерности m×2m следующего вида: (G>m|E>m).

2. Используя операции сложения строк и умножения строки на ненулевое число преобразуем левую квадратную подматрицу к единичной. В результате получим (E>m|G>m>-1). Пусть известна G>m>-1 — обратная к матрице Грама для множества из m векторов x>i. Добавим к этому множеству вектор x>m>+1. Тогда матрица для обращения матрицы G>m+1 методом Гауса будет иметь вид:

После приведения к единичной матрице главного минора ранга m получится следующая матрица:

где b>i — неизвестные величины, полученные в ходе приведения главного минора к единичной матрице. Для завершения обращения матрицы G>m+1 необходимо привести к нулевому виду первые m элементов последней строки и (m +1)-го столбца. Для обращения в ноль i-го элемента последней строки необходимо умножить i-ю строку на (x, x>m>+1) и вычесть из последней строки. После проведения этого преобразования получим

где , .

b>0 = 0 только если новый эталон является линейной комбинацией первых m эталонов. Следовательно b>0 ≠ 0. Для завершения обращения необходимо разделить последнюю строку на b>0 и затем вычесть из всех предыдущих строк последнюю, умноженную на соответствующее номеру строки b>i. В результате получим следующую матрицу

где F>ij = G>mij>-1-b>ic>j/b>0. Поскольку матрица, обратная к симметричной, всегда симметрична получаем c>i/b>0 = -b>i/b>0 при всех i. Так как b>0 ≠ 0 следовательно b>i = -c>i.

Обозначим через d вектор ((x>1, x>m>+1), …, (x>m, x>m>+1)), через b — вектор (b>1, …, b>m). Используя эти обозначения можно записать b = G>m>-1d, b>0 = (x>m>+1,x>m>+1)-(d,b), b>0 = (x>m>+1,x>m>+1)-(d,b). Матрица G>m+1>-1 записывается в виде

Таким образом, при добавлении нового эталона требуется произвести следующие операции:

1. Вычислить вектор d (m скалярных произведений — mn операций, mnn²).

2. Вычислить вектор b (умножение вектора на матрицу — m² операций).

3. Вычислить b>0 (два скалярных произведения — m+n операций).

4. Умножить матрицу на число и добавить тензорное произведение вектора b на себя (2m² операций).

5. Записать G>m+1>-1.

Таким образом эта процедура требует m+n+mn+3m² операций. Тогда как стандартная схема полного пересчета потребует:

1. Вычислить всю матрицу Грама (nm(m+1)/2 операций).

2. Методом Гаусса привести левую квадратную матрицу к единичному виду (2m³+m²-m операций).

3. Записать G>m+1>-1.

Всего 2m³+m²–m+nm(m+1)/2 операций, что в m раз больше.

Используя ортогональную сеть (6), удалось добиться независимости способности сети к запоминанию и точному воспроизведению эталонов от степени коррелированности эталонов. Так, например, ортогональная сеть смогла правильно воспроизвести все буквы латинского алфавита в написании, приведенном на рис. 1.

Основным ограничением сети (6) является малое число эталонов — число линейно независимых эталонов должно быть меньше размерности системы n.

Тензорные сети

Для увеличения числа линейно независимых эталонов, не приводящих к прозрачности сети, используется прием перехода к тензорным или многочастичным сетям [75, 86, 93, 293].

В тензорных сетях используются тензорные степени векторов. k-ой тензорной степенью вектора x будем называть тензор x>⊗k, полученный как тензорное произведение k векторов x.

Поскольку в данной работе тензоры используются только как элементы векторного пространства, далее будем использовать термин вектор вместо тензор. Вектор x>⊗k является n>k-мерным вектором. Однако пространство L({x>⊗k}) имеет размерность, не превышающую величину , где — число сочетаний из p по q. Обозначим через {x>⊗k} множество k-х тензорных степеней всех возможных образов.

Теорема. При k в множестве {x>⊗k} линейно независимыми являются векторов. Доказательство теоремы приведено в последнем разделе данной главы.

Небольшая модернизация треугольника Паскаля, позволяет легко вычислять эту величину. На рис. 2 приведен «тензорный» треугольник Паскаля. При его построении использованы следующие правила:

1. Первая строка содержит двойку, поскольку при n= 2 в множестве X всего два неколлинеарных вектора.

2. При переходе к новой строке, первый элемент получается добавлением единицы к первому элементу предыдущей строки, второй — как сумма первого и второго элементов предыдущей строки, третий — как сумма второго и третьего элементов и т. д. Последний элемент получается удвоением последнего элемента предыдущей строки.

Рис. 2. “Тензорный” треугольник Паскаля


В табл. 1 приведено сравнение трех оценок информационной емкости тензорных сетей для некоторых значений n и k. Первая оценка — n>k — заведомо завышена, вторая — — дается формулой Эйлера для размерности пространства симметричных тензоров и третья — точное значение.


Таблица 1.

Как легко видеть из таблицы, уточнение при переходе к оценке r>n,k является весьма существенным. С другой стороны, предельная информационная емкость тензорной сети (число правильно воспроизводимых образов) может существенно превышать число нейронов, например, для 10 нейронов тензорная сеть валентности 8 имеет предельную информационную емкость 511.


Рекомендуем почитать
Юный техник, 2015 № 11

Популярный детский и юношеский журнал.


Юный техник, 2015 № 09

Популярный детский и юношеский журнал.


Покорители земных недр

Авторы этой книги — горный инженер по технике разведки и геолог-разведчик — знакомят молодежь с одной из ведущих технических профессий в геологоразведочном деле — с работой первых помощников геолога: бурильщиков и буровых мастеров. Рассказывают о роли бурения скважин в различных отраслях народного хозяйства. Прослеживают развитие техники бурения от простейшего ручного бура до автоматизированных буровых установок. Раскрывают романтику и реальность профессии первооткрывателей земных недр.Для учащейся молодежи, выбирающей будущую профессию, а также для работников, занимающихся вопросами профориентации школьников.


Техническое обеспечение безопасности бизнеса

Алешин Александр Павлович - начальник службы безопасности коммерческой организации. Базовое образование и трудовая деятельность в различных коммерческих структурах позволили детально вникнуть в проблему охраны бизнеса от различных рисков при помощи технических средств.С появлением собственности возникла и необходимость ее защиты. Степень и возможности защиты в разные периоды развития человеческого общества были различны и зависели от уровня экономического развития общества и наличия технических средств защиты.


Изобретения Дедала

Научно-популярная книга английского популяризатора науки и техники, выступавшего в течение многих лет на страницах журнала New Scientist под псевдонимом «Дедал». В живой и увлекательной форме автор рассказывает о смелых, поражающих воображение «идеях» современного Дедала – от твердой «газировки» и электрического садовника до молекулярного гироскопа и магнитного монополя.Написанная с большим юмором, красочно иллюстрированная, книга адресована всем интересующимся достижениями науки и техники.


Занимательная анатомия роботов

В занимательной форме рассказано об исследованиях и разработках важнейших систем современных роботов. Показано, как можно самим выполнить ту или иную систему робота из простейших электронных схем. Приведены практические схемы отечественных и зарубежных любительских конструкций роботов. По сравнению с первым изданием (1980 г) материал значительно обновлён Для широкого круга читателей.