Учебное пособие по курсу «Нейроинформатика» - [16]

Шрифт
Интервал

10, k=2 (см. табл. 3 и 4, строки 3, 4, 5) наблюдалось уменьшение числа химер с ростом валентности, однако часть химер, удаленных от ближайшего эталона на расстояние 2 сохранялась. Сеть правильно декодировала более 50% сигналов. Таким образом при малых размерностях и кодах, далеких от совершенных, тензорная сеть работает довольно плохо. Однако, уже при n=15, k=3 и валентности, большей 3 (см. табл. 3 и 4, строки 6, 7), сеть правильно декодировала все сигналы с тремя ошибками. В большинстве экспериментов число эталонов было больше числа нейронов.


Таблица 4. Результаты численного эксперимента


Число химер, удаленных от ближайшего эталона на:Число неверно распознанных векторов, удаленных от ближайшего эталона на:
1234512345
16402560008960000
238400003840000
3021050000210290600
4018050000180290600
508850200156290600
60011201344089600112013440896
70001344089600013440896

Подводя итог можно сказать, что качество работы сети возрастает с ростом размерности пространства и валентности и по эффективности устранения ошибок сеть приближается к коду, гарантированно исправляющему ошибки.

Доказательство теоремы

В данном разделе приведено доказательство теоремы о числе линейно независимых образов в пространстве k-х тензорных степеней эталонов.

При построении тензорных сетей используются тензоры валентности k следующего вида:

(13)

где a>j — n-мерные вектора над полем действительных чисел.

Если все вектора a>i=a, то будем говорить о k-й тензорной степени вектора a, и использовать обозначение a>⊗k. Для дальнейшего важны следующие элементарные свойства тензоров вида (13).

1. Пусть и , тогда скалярное произведение этих векторов может быть вычислено по формуле

(14)

Доказательство этого свойства следует непосредственно из свойств тензоров общего вида.

2. Если в условиях свойства 1 вектора являются тензорными степенями, то скалярное произведение имеет вид:

(15)

Доказательство непосредственно вытекает из свойства 1.

3. Если вектора a и b ортогональны, то есть (a,b) = 0, то и их тензорные степени любой положительной валентности ортогональны.

Доказательство вытекает из свойства 2.

4. Если вектора a и b коллинеарны, то есть b = λa, то a>⊗k=λ>ka>⊗k.

Следствие. Если множество векторов содержит хотя бы одну пару противоположно направленных векторов, то система векторов будет линейно зависимой при любой валентности k.

5. Применение к множеству векторов невырожденного линейного преобразования B в пространстве R>n эквивалентно применению к множеству векторов линейного невырожденного преобразования, индуцированного преобразованием B, в пространстве .

Сюръективным мультииндексом α(L) над конечным множеством L назовем k-мерный вектор, обладающий следующими свойствами:

1. для любого iL существует j∈{1, …, k} такое, что α>j=i;

2. для любого j∈{1, …, k} существует iL такое, что α>j=i.

Обозначим через d(α(L),i) число компонент сюръективного мультииндекса α(L) равных i, через |L| — число элементов множества L, а через Α(L) — множество всех сюръективных мультииндексов над множеством L.

Предложение 1. Если вектор a представлен в виде , где β>i — произвольные действительные коэффициенты, то верно следующее равенство

(16)

Доказательство предложения получается возведением в тензорную степень k и раскрытием скобок с учетом линейности операции тензорного умножения.

В множестве , выберем множество X следующим образом: возьмем все (n-1)-мерные вектора с координатами ±1, а в качестве n-й координаты во всех векторах возьмем единицу.

Предложение 2. Множество x является максимальным множеством n-мерных векторов с координатами равными ±1 и не содержит пар противоположно направленных векторов.

Доказательство. Из равенства единице последней координаты всех векторов множества X следует отсутствие пар противоположно направленных векторов. Пусть x — вектор с координатами ±1, не входящий в множество X, следовательно последняя координата вектора x равна минус единице. Так как в множество X включались все (n-1) — мерные вектора с координатами ±1, то среди них найдется вектор, первые n-1 координата которого равны соответствующим координатам вектора x со знаком минус. Поскольку последние координаты также имеют противоположные знаки, то в множестве X нашелся вектор противоположно направленный по отношению к вектору x. Таким образом множество X максимально.

Таким образом в множестве X содержится ровно 2>n-1 вектор. Каждый вектор x∈X можно представить в виде , где I⊂{1, …, n-1}. Для нумерации векторов множества X будем использовать мультииндекс I. Обозначим через |I| число элементов в мультииндексе I. Используя введенные обозначения можно разбить множество X на n непересекающихся подмножеств: P>i = {x>I, |I|=i}, .

Теорема. При k в множестве {x>⊗k} линейно независимыми являются

векторов.

Для доказательства этой теоремы потребуется следующая интуитивно очевидная, но не встреченная в литературе лемма.

Лемма. Пусть дана последовательность векторов

a>1,a>2=a¹>2+a²>2,a>3=a¹>3+a²>3,…,a>m=a¹>m+a²>m

таких, что (a>i,a²>j)=0 при всех i<j и (a¹>i,a²>i)=0, a²>i≠0 при всех i, тогда все вектора множества {a>i} линейно независимы.

Доказательство. Известно, что процедура ортогонализации Грама приводит к построению ортонормированного множества векторов, а все вектора линейно зависящие от предыдущих векторов последовательности обращаются в нулевые. Проведем процедуру ортогонализации для заданной последовательности векторов.


Рекомендуем почитать
Глубоководные аппараты (вехи глубоководной тематики)

Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.