Учебное пособие по курсу «Нейроинформатика» - [16]

Шрифт
Интервал

10, k=2 (см. табл. 3 и 4, строки 3, 4, 5) наблюдалось уменьшение числа химер с ростом валентности, однако часть химер, удаленных от ближайшего эталона на расстояние 2 сохранялась. Сеть правильно декодировала более 50% сигналов. Таким образом при малых размерностях и кодах, далеких от совершенных, тензорная сеть работает довольно плохо. Однако, уже при n=15, k=3 и валентности, большей 3 (см. табл. 3 и 4, строки 6, 7), сеть правильно декодировала все сигналы с тремя ошибками. В большинстве экспериментов число эталонов было больше числа нейронов.


Таблица 4. Результаты численного эксперимента


Число химер, удаленных от ближайшего эталона на:Число неверно распознанных векторов, удаленных от ближайшего эталона на:
1234512345
16402560008960000
238400003840000
3021050000210290600
4018050000180290600
508850200156290600
60011201344089600112013440896
70001344089600013440896

Подводя итог можно сказать, что качество работы сети возрастает с ростом размерности пространства и валентности и по эффективности устранения ошибок сеть приближается к коду, гарантированно исправляющему ошибки.

Доказательство теоремы

В данном разделе приведено доказательство теоремы о числе линейно независимых образов в пространстве k-х тензорных степеней эталонов.

При построении тензорных сетей используются тензоры валентности k следующего вида:

(13)

где a>j — n-мерные вектора над полем действительных чисел.

Если все вектора a>i=a, то будем говорить о k-й тензорной степени вектора a, и использовать обозначение a>⊗k. Для дальнейшего важны следующие элементарные свойства тензоров вида (13).

1. Пусть и , тогда скалярное произведение этих векторов может быть вычислено по формуле

(14)

Доказательство этого свойства следует непосредственно из свойств тензоров общего вида.

2. Если в условиях свойства 1 вектора являются тензорными степенями, то скалярное произведение имеет вид:

(15)

Доказательство непосредственно вытекает из свойства 1.

3. Если вектора a и b ортогональны, то есть (a,b) = 0, то и их тензорные степени любой положительной валентности ортогональны.

Доказательство вытекает из свойства 2.

4. Если вектора a и b коллинеарны, то есть b = λa, то a>⊗k=λ>ka>⊗k.

Следствие. Если множество векторов содержит хотя бы одну пару противоположно направленных векторов, то система векторов будет линейно зависимой при любой валентности k.

5. Применение к множеству векторов невырожденного линейного преобразования B в пространстве R>n эквивалентно применению к множеству векторов линейного невырожденного преобразования, индуцированного преобразованием B, в пространстве .

Сюръективным мультииндексом α(L) над конечным множеством L назовем k-мерный вектор, обладающий следующими свойствами:

1. для любого iL существует j∈{1, …, k} такое, что α>j=i;

2. для любого j∈{1, …, k} существует iL такое, что α>j=i.

Обозначим через d(α(L),i) число компонент сюръективного мультииндекса α(L) равных i, через |L| — число элементов множества L, а через Α(L) — множество всех сюръективных мультииндексов над множеством L.

Предложение 1. Если вектор a представлен в виде , где β>i — произвольные действительные коэффициенты, то верно следующее равенство

(16)

Доказательство предложения получается возведением в тензорную степень k и раскрытием скобок с учетом линейности операции тензорного умножения.

В множестве , выберем множество X следующим образом: возьмем все (n-1)-мерные вектора с координатами ±1, а в качестве n-й координаты во всех векторах возьмем единицу.

Предложение 2. Множество x является максимальным множеством n-мерных векторов с координатами равными ±1 и не содержит пар противоположно направленных векторов.

Доказательство. Из равенства единице последней координаты всех векторов множества X следует отсутствие пар противоположно направленных векторов. Пусть x — вектор с координатами ±1, не входящий в множество X, следовательно последняя координата вектора x равна минус единице. Так как в множество X включались все (n-1) — мерные вектора с координатами ±1, то среди них найдется вектор, первые n-1 координата которого равны соответствующим координатам вектора x со знаком минус. Поскольку последние координаты также имеют противоположные знаки, то в множестве X нашелся вектор противоположно направленный по отношению к вектору x. Таким образом множество X максимально.

Таким образом в множестве X содержится ровно 2>n-1 вектор. Каждый вектор x∈X можно представить в виде , где I⊂{1, …, n-1}. Для нумерации векторов множества X будем использовать мультииндекс I. Обозначим через |I| число элементов в мультииндексе I. Используя введенные обозначения можно разбить множество X на n непересекающихся подмножеств: P>i = {x>I, |I|=i}, .

Теорема. При k в множестве {x>⊗k} линейно независимыми являются

векторов.

Для доказательства этой теоремы потребуется следующая интуитивно очевидная, но не встреченная в литературе лемма.

Лемма. Пусть дана последовательность векторов

a>1,a>2=a¹>2+a²>2,a>3=a¹>3+a²>3,…,a>m=a¹>m+a²>m

таких, что (a>i,a²>j)=0 при всех i<j и (a¹>i,a²>i)=0, a²>i≠0 при всех i, тогда все вектора множества {a>i} линейно независимы.

Доказательство. Известно, что процедура ортогонализации Грама приводит к построению ортонормированного множества векторов, а все вектора линейно зависящие от предыдущих векторов последовательности обращаются в нулевые. Проведем процедуру ортогонализации для заданной последовательности векторов.


Рекомендуем почитать
Юный техник, 2015 № 11

Популярный детский и юношеский журнал.


Юный техник, 2015 № 09

Популярный детский и юношеский журнал.


Покорители земных недр

Авторы этой книги — горный инженер по технике разведки и геолог-разведчик — знакомят молодежь с одной из ведущих технических профессий в геологоразведочном деле — с работой первых помощников геолога: бурильщиков и буровых мастеров. Рассказывают о роли бурения скважин в различных отраслях народного хозяйства. Прослеживают развитие техники бурения от простейшего ручного бура до автоматизированных буровых установок. Раскрывают романтику и реальность профессии первооткрывателей земных недр.Для учащейся молодежи, выбирающей будущую профессию, а также для работников, занимающихся вопросами профориентации школьников.


Техническое обеспечение безопасности бизнеса

Алешин Александр Павлович - начальник службы безопасности коммерческой организации. Базовое образование и трудовая деятельность в различных коммерческих структурах позволили детально вникнуть в проблему охраны бизнеса от различных рисков при помощи технических средств.С появлением собственности возникла и необходимость ее защиты. Степень и возможности защиты в разные периоды развития человеческого общества были различны и зависели от уровня экономического развития общества и наличия технических средств защиты.


Изобретения Дедала

Научно-популярная книга английского популяризатора науки и техники, выступавшего в течение многих лет на страницах журнала New Scientist под псевдонимом «Дедал». В живой и увлекательной форме автор рассказывает о смелых, поражающих воображение «идеях» современного Дедала – от твердой «газировки» и электрического садовника до молекулярного гироскопа и магнитного монополя.Написанная с большим юмором, красочно иллюстрированная, книга адресована всем интересующимся достижениями науки и техники.


Занимательная анатомия роботов

В занимательной форме рассказано об исследованиях и разработках важнейших систем современных роботов. Показано, как можно самим выполнить ту или иную систему робота из простейших электронных схем. Приведены практические схемы отечественных и зарубежных любительских конструкций роботов. По сравнению с первым изданием (1980 г) материал значительно обновлён Для широкого круга читателей.