Учебное пособие по курсу «Нейроинформатика» - [15]
Легко показать, что если множество векторов {x>i} не содержит противоположно направленных, то размерность пространства L({x>⊗k}) равна числу векторов в множестве {x>i}.
Сеть (2) для случая тензорных сетей имеет вид
а ортогональная тензорная сеть
где r>ij>-1 — элемент матрицы Γ>-1({x>⊗k}).
Рассмотрим, как изменяется степень коррелированности эталонов при переходе к тензорным сетям (9)
Таким образом, при использовании сетей (9) сильно снижается ограничение на степень коррелированности эталонов. Для эталонов, приведенных на рис. 1, данные о степени коррелированности эталонов для нескольких тензорных степеней приведены в табл. 2.
Таблица 2. Степени коррелированности эталонов, приведенных на рис. 1, для различных тензорных степеней.
| Тензорная степень | Степень коррелированности | Условия | ||||
|---|---|---|---|---|---|---|
| C>AB | C>AC | C>BC | C>AB+C>AC | C>AB+C>BC | C>AC+C>BC | |
| 1 | 0.74 | 0.72 | 0.86 | 1.46 | 1.60 | 1.58 |
| 2 | 0.55 | 0.52 | 0.74 | 1.07 | 1.29 | 1.26 |
| 3 | 0.41 | 0.37 | 0.64 | 0.78 | 1.05 | 1.01 |
| 4 | 0.30 | 0.26 | 0.55 | 0.56 | 0.85 | 0.81 |
| 5 | 0.22 | 0.19 | 0.47 | 0.41 | 0.69 | 0.66 |
| 6 | 0.16 | 0.14 | 0.40 | 0.30 | 0.56 | 0.54 |
| 7 | 0.12 | 0.10 | 0.35 | 0.22 | 0.47 | 0.45 |
| 8 | 0.09 | 0.07 | 0.30 | 0.16 | 0.39 | 0.37 |
Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (
Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.
Сети для инвариантной обработки изображений
Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора сдвига.
В качестве примера рассмотрим вычисление сдвигового автокоррелятора для черно-белых изображений. Пусть дан двумерный образ S размером p×q=n. Обозначим точки образа как s>ij. Элементами автокоррелятора Ac(S) будут величины
Автокорреляторная сеть имеет вид
Сеть (11) позволяет обрабатывать различные визуальные образы, отличающиеся только положением в рамке, как один образ.
Конструирование сетей под задачу
Подводя итоги, можно сказать, что все сети ассоциативной памяти типа (2) можно получить, комбинируя следующие преобразования:
1. Произвольное преобразование. Например, переход к автокорреляторам, позволяющий объединять в один выходной образ все образы, отличающиеся только положением в рамке.
2. Тензорное преобразование, позволяющее сильно увеличить способность сети запоминать и точно воспроизводить эталоны.
3. Переход к ортогональному проектору, снимающий зависимость надежности работы сети от степени коррелированности образов.
Наиболее сложная сеть будет иметь вид:
где r>ij>-1 — элементы матрицы, обратной матрице Грама системы векторов {F(x>i)}>⊗k, F(x) — произвольное преобразование.
Возможно применение и других методов предобработки. Некоторые из них рассмотрены в работах [68, 91, 278]
Численный эксперимент
Работа ортогональных тензорных сетей при наличии помех сравнивалась с возможностями линейных кодов, исправляющих ошибки. Линейным кодом, исправляющим k ошибок, называется линейное подпространство в n-мерном пространстве над GF2, все вектора которого удалены друг от друга не менее чем на 2k+1. Линейный код называется совершенным, если для любого вектора n-мерного пространства существует кодовый вектор, удаленный от данного не более, чем на k. Тензорной сети в качестве эталонов подавались все кодовые векторы избранного для сравнения кода. Численные эксперименты с совершенными кодами показали, что тензорная сеть минимально необходимой валентности правильно декодирует все векторы. Для несовершенных кодов картина оказалась хуже — среди устойчивых образов тензорной сети появились «химеры» — векторы, не принадлежащие множеству эталонов.
Таблица 3. Результаты численного эксперимента. МР — минимальное расстояние между эталонами, ЧЭ — число эталонов
| № | Размерность | Число векторов | МР | ЧЭ | Валентность | Число химер | Число ответов | После обработки сетью расстояние до правильного ответа стало | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| верн. | неверн. | меньше | то же | больше | |||||||
| 1 | 10 | 1024 | 3 | 64 | 3,5 | 896 | 128 | 896 | 0 | 856 | 0 |
| 2 | 7,21 | 384 | 640 | 384 | 0 | 348 | 0 | ||||
| 3 | 10 | 1024 | 5 | 8 | 3 | 260 | 464 | 560 | 240 | 260 | 60 |
| 4 | 5,15 | 230 | 494 | 530 | 240 | 230 | 60 | ||||
| 5 | 17,21 | 140 | 532 | 492 | 240 | 182 | 70 | ||||
| 6 | 15 | 32768 | 7 | 32 | 3 | 15456 | 17312 | 15456 | 0 | 15465 | 0 |
| 7 | 5,21 | 14336 | 18432 | 14336 | 0 | 14336 | 0 | ||||
В случае n=10, k=1 (см. табл. 3 и 4, строка 1) при валентностях 3 и 5 тензорная сеть работала как единичный оператор — все входные вектора передавались на выход сети без изменений. Однако уже при валентности 7 число химер резко сократилось и сеть правильно декодировала более 60% сигналов. При этом были правильно декодированы все векторы, удаленные от ближайшего эталона на расстояние 2, а часть векторов, удаленных от ближайшего эталона на расстояние 1, остались химерами. В случае
Авторы этой книги — горный инженер по технике разведки и геолог-разведчик — знакомят молодежь с одной из ведущих технических профессий в геологоразведочном деле — с работой первых помощников геолога: бурильщиков и буровых мастеров. Рассказывают о роли бурения скважин в различных отраслях народного хозяйства. Прослеживают развитие техники бурения от простейшего ручного бура до автоматизированных буровых установок. Раскрывают романтику и реальность профессии первооткрывателей земных недр.Для учащейся молодежи, выбирающей будущую профессию, а также для работников, занимающихся вопросами профориентации школьников.
Алешин Александр Павлович - начальник службы безопасности коммерческой организации. Базовое образование и трудовая деятельность в различных коммерческих структурах позволили детально вникнуть в проблему охраны бизнеса от различных рисков при помощи технических средств.С появлением собственности возникла и необходимость ее защиты. Степень и возможности защиты в разные периоды развития человеческого общества были различны и зависели от уровня экономического развития общества и наличия технических средств защиты.
Научно-популярная книга английского популяризатора науки и техники, выступавшего в течение многих лет на страницах журнала New Scientist под псевдонимом «Дедал». В живой и увлекательной форме автор рассказывает о смелых, поражающих воображение «идеях» современного Дедала – от твердой «газировки» и электрического садовника до молекулярного гироскопа и магнитного монополя.Написанная с большим юмором, красочно иллюстрированная, книга адресована всем интересующимся достижениями науки и техники.
В занимательной форме рассказано об исследованиях и разработках важнейших систем современных роботов. Показано, как можно самим выполнить ту или иную систему робота из простейших электронных схем. Приведены практические схемы отечественных и зарубежных любительских конструкций роботов. По сравнению с первым изданием (1980 г) материал значительно обновлён Для широкого круга читателей.