Учебное пособие по курсу «Нейроинформатика» - [13]
Из того, что a и b различны следует, что существует множество индексов, в которых координаты векторов a и b различны. Обозначим это множество через I = {i : a>i = -b>i}. Из второго преобразования в (5) и того, что b = x', следует, что знаки координат вектора Px всегда совпадают со знаками соответствующих координат вектора b. Учитывая различие знаков i-х координат векторов a и Px при i ∈ I можно записать |a>i-(Px)>i| = |a>i|+|(Px)>i| = 1+|(Px)>i|. Совпадение знаков i-х координат векторов b и Px при i ∈ I позволяет записать следующее неравенство |b>i-(Px)>i| = ||b>i|-|(Px)>i| < 1+|(Px)>i|. Сравним расстояния от вершин a и b до точки Px
Полученное неравенство
Ортогональные сети
Для обеспечения правильного воспроизведения эталонов вне зависимости от степени их коррелированности достаточно потребовать, чтобы первое преобразование в (5) было таким, что x>i = Px>i [67]. Очевидно, что если проектор является ортогональным, то это требование выполняется, поскольку x = Px при x ∈L({x>i}), а x>j ∈L({x>i}) по определению множества L({x>i}).
Для обеспечения ортогональности проектора воспользуемся дуальным множеством векторов. Множество векторов V({x>i}) называется дуальным к множеству векторов {x>i}, если все векторы этого множества v>j удовлетворяют следующим требованиям:
1. (x>i, v>i) = ς>ij; ς>ij = 0, при i ≠ j; ς>ij = 1 при i = j;
2. v>j ∈L({x>i}).
Преобразование
является ортогональным проектором на линейное пространство L({x>i}).
Ортогональная сеть ассоциативной памяти преобразует образы по формуле
Дуальное множество векторов существует тогда и только тогда, когда множество векторов {x>i} линейно независимо. Если множество эталонов {x>i} линейно зависимо, то исключим из него линейно зависимые образы и будем рассматривать полученное усеченное множество эталонов как основу для построения дуального множества и преобразования (6). Образы, исключенные из исходного множества эталонов, будут по-прежнему сохраняться сетью в исходном виде (преобразовываться в самих себя). Действительно, пусть эталон x является линейно зависимым от остальных m эталонов. Тогда его можно представить в виде
Подставив полученное выражение в преобразование (6) и учитывая свойства дуального множества получим:
Рассмотрим свойства сети (6) [67]. Во-первых, количество запоминаемых и точно воспроизводимых эталонов не зависит от степени их коррелированности. Во-вторых, формально сеть способна работать без искажений при любом возможном числе эталонов (всего их может быть до 2>n). Однако, если число линейно независимых эталонов (т. е. ранг множества эталонов) равно n, сеть становится прозрачной — какой бы образ не предъявили на ее вход, на выходе окажется тот же образ. Действительно, как было показано в (7), все образы, линейно зависимые от эталонов, преобразуются проективной частью преобразования (6) сами в себя. Значит, если в множестве эталонов есть n линейно независимых, то любой образ можно представить в виде линейной комбинации эталонов (точнее n линейно независимых эталонов), а проективная часть преобразования (6) в силу формулы (7) переводит любую линейную комбинацию эталонов в саму себя.
Если число линейно независимых эталонов меньше n, то сеть преобразует поступающий образ, отфильтровывая помехи, ортогональные всем эталонам.
Отметим, что результаты работы сетей (3) и (6) эквивалентны, если все эталоны попарно ортогональны.
Остановимся несколько подробнее на алгоритме вычисления дуального множества векторов. Обозначим через Γ({x>i}) матрицу Грама множества векторов {x>i}.
Элементы матрицы Грама имеют вид γ>ij = (x>i, x>j) (ij-ый элемент матрицы Грама равен скалярному произведению i-го эталона на j-ый). Известно, что векторы дуального множества можно записать в следующем виде:
где γ>ij>-1 — элемент матрицы Γ>-1({x>i}). Поскольку определитель матрицы Грама равен нулю, если множество векторов линейно зависимо, то матрица, обратная к матрице Грама, а следовательно и дуальное множество векторов существует только тогда, когда множество эталонов линейно независимо.
Для работ сети (6) необходимо хранить эталоны и матрицу Γ>-1({x>i}).
Рассмотрим процедуру добавления нового эталона к сети (6). Эта операция часто называется дообучением сети. Важным критерием оценки алгоритма формирования сети является соотношение вычислительных затрат на обучение и дообучение. Затраты на дообучение не должны зависеть от числа освоенных ранее эталонов.
Для сетей Хопфилда это, очевидно, выполняется — добавление еще одного эталона сводится к прибавлению к функции H одного слагаемого (x, x>m>+1)², а модификация связей в сети — состоит в прибавлении к весу ij-й связи числа x>i>m>+1x>j>m>+1 — всего n² операций.
Для рассматриваемых сетей с ортогональным проектированием также возможно простое дообучение. На первый взгляд, это может показаться странным — если добавляемый эталон линейно независим от старых эталонов, то, вообще говоря, необходимо пересчитать матрицу Грама и обратить ее. Однако симметричность матрицы Грама позволяет не производить заново процедуру обращения всей матрицы. Действительно, обозначим через
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.