Учебное пособие по курсу «Нейроинформатика» - [12]

Шрифт
Интервал

1. Каждый эталон должен быть точкой минимума.

2. В точке минимума все координаты образа должны иметь значения ±1.

Функция

не удовлетворяет этим требованиям строго, но можно предполагать, что первое слагаемое обеспечит притяжение к эталонам (для вектора x фиксированной длины максимум квадрата скалярного произведения (x, x>i)² достигается при x= x>i…), а второе слагаемое — приблизит к единице абсолютные величины всех координат точки минимума). Величина a характеризует соотношение между этими двумя требованиями и может меняться со временем.

Используя выражение для энергии, можно записать систему уравнений, описывающих функционирование сети Хопфилда [312]:

(1)

Сеть Хопфилда в виде (1) является сетью с непрерывным временем. Это, быть может, и удобно для некоторых вариантов аналоговой реализации, но для цифровых компьютеров лучше воспользоваться сетями, функционирующими в дискретном времени — шаг за шагом.

Построим сеть Хопфилда [312] с дискретным временем. Сеть должна осуществлять преобразование входного вектора x так, чтобы выходной вектор x' был ближе к тому эталону, который является правильным ответом. Преобразование сети будем искать в следующем виде:

(2)

где w>i — вес i-го эталона, характеризующий его близость к вектору x, Sign — нелинейный оператор, переводящий вектор с координатами yi в вектор с координатами sign(yi).

Функционирование сети

Сеть работает следующим образом:

1. На вход сети подается образ x, а на выходе снимается образ x'.

2. Если x' ≠ x, то полагаем x = x' и возвращаемся к шагу 1.

3. Полученный вектор x' является ответом.

Таким образом, ответ всегда является неподвижной точкой преобразования сети (2) и именно это условие (неизменность при обработке образа сетью) и является условием остановки.

Пусть j>* — номер эталона, ближайшего к образу x. Тогда, если выбрать веса пропорционально близости эталонов к исходному образу x, то следует ожидать, что образ x' будет ближе к эталону x>i>′, чем x, а после нескольких итераций он станет совпадать с эталоном x>i>′.

Наиболее простой сетью вида (2) является дискретный вариант сети Хопфилда [312] с весами равными скалярному произведению эталонов на предъявляемый образ:

(3)

Рис. 1. а, б, в — эталоны, г — ответ сети на предъявление любого эталона


О сетях Хопфилда (3) известно [53, 231, 247, 312], что они способны запомнить и точно воспроизвести «порядка 0.14n слабо коррелированных образов». В этом высказывании содержится два ограничения:

• число эталонов не превосходит 0.14n.

• эталоны слабо коррелированны.

Наиболее существенным является второе ограничение, поскольку образы, которые сеть должна обрабатывать, часто очень похожи. Примером могут служить буквы латинского алфавита. При обучении сети Хопфилда (3) распознаванию трех первых букв (см. рис. 1 а, б, в), при предъявлении на вход сети любого их эталонов в качестве ответа получается образ, приведенный на рис. 1 г (все образы брались в рамке 10 на 10 точек).

В связи с такими примерами первый вопрос о качестве работы сети ассоциативной памяти звучит тривиально: будет ли сеть правильно обрабатывать сами эталонные образы (т. е. не искажать их)?

Мерой коррелированности образов будем называть следующую величину:

Зависимость работы сети Хопфилда от степени коррелированности образов можно легко продемонстрировать на следующем примере. Пусть даны три эталона x>1, x>2, x>3 таких, что

(4)

Для любой координаты существует одна из четырех возможностей:

В первом случае при предъявлении сети q-го эталона в силу формулы (3) получаем

так как все скалярные произведения положительны по условию (4). Аналогично получаем в четвертом случае x'>j = -1.

Во втором случае рассмотрим отдельно три варианта

так как скалярный квадрат любого образа равен n, а сумма двух любых скалярных произведений эталонов больше n, по условию (4). Таким образом, независимо от предъявленного эталона получаем x'>j = 1. Аналогично в третьем случае получаем x'>j = -1.

Окончательный вывод таков: если эталоны удовлетворяют условиям (4), то при предъявлении любого эталона на выходе всегда будет один образ. Этот образ может быть эталоном или «химерой», составленной, чаще всего, из узнаваемых фрагментов различных эталонов (примером «химеры» может служить образ, приведенный на рис. 1 г). Рассмотренный ранее пример с буквами детально иллюстрирует такую ситуацию.

Приведенные выше соображения позволяют сформулировать требование, детализирующие понятие «слабо коррелированных образов». Для правильного распознавания всех эталонов достаточно (но не необходимо) потребовать, чтобы выполнялось следующее неравенство

Более простое и наглядное, хотя и более сильное условие можно записать в виде

Из этих условий видно, что, чем больше задано эталонов, тем более жесткие требования предъявляются к степени их коррелированности, тем ближе они должны быть к ортогональным.

Рассмотрим преобразование (3) как суперпозицию двух преобразований:

(5)

Обозначим через

— линейное пространство, натянутое на множество эталонов. Тогда первое преобразование в (5) переводит векторы из R>n в L({x>i}). Второе преобразование в (5) переводит результат первого преобразования


Рекомендуем почитать
Глубоководные аппараты (вехи глубоководной тематики)

Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.