Учебное пособие по курсу «Нейроинформатика» - [12]

Шрифт
Интервал

1. Каждый эталон должен быть точкой минимума.

2. В точке минимума все координаты образа должны иметь значения ±1.

Функция

не удовлетворяет этим требованиям строго, но можно предполагать, что первое слагаемое обеспечит притяжение к эталонам (для вектора x фиксированной длины максимум квадрата скалярного произведения (x, x>i)² достигается при x= x>i…), а второе слагаемое — приблизит к единице абсолютные величины всех координат точки минимума). Величина a характеризует соотношение между этими двумя требованиями и может меняться со временем.

Используя выражение для энергии, можно записать систему уравнений, описывающих функционирование сети Хопфилда [312]:

(1)

Сеть Хопфилда в виде (1) является сетью с непрерывным временем. Это, быть может, и удобно для некоторых вариантов аналоговой реализации, но для цифровых компьютеров лучше воспользоваться сетями, функционирующими в дискретном времени — шаг за шагом.

Построим сеть Хопфилда [312] с дискретным временем. Сеть должна осуществлять преобразование входного вектора x так, чтобы выходной вектор x' был ближе к тому эталону, который является правильным ответом. Преобразование сети будем искать в следующем виде:

(2)

где w>i — вес i-го эталона, характеризующий его близость к вектору x, Sign — нелинейный оператор, переводящий вектор с координатами yi в вектор с координатами sign(yi).

Функционирование сети

Сеть работает следующим образом:

1. На вход сети подается образ x, а на выходе снимается образ x'.

2. Если x' ≠ x, то полагаем x = x' и возвращаемся к шагу 1.

3. Полученный вектор x' является ответом.

Таким образом, ответ всегда является неподвижной точкой преобразования сети (2) и именно это условие (неизменность при обработке образа сетью) и является условием остановки.

Пусть j>* — номер эталона, ближайшего к образу x. Тогда, если выбрать веса пропорционально близости эталонов к исходному образу x, то следует ожидать, что образ x' будет ближе к эталону x>i>′, чем x, а после нескольких итераций он станет совпадать с эталоном x>i>′.

Наиболее простой сетью вида (2) является дискретный вариант сети Хопфилда [312] с весами равными скалярному произведению эталонов на предъявляемый образ:

(3)

Рис. 1. а, б, в — эталоны, г — ответ сети на предъявление любого эталона


О сетях Хопфилда (3) известно [53, 231, 247, 312], что они способны запомнить и точно воспроизвести «порядка 0.14n слабо коррелированных образов». В этом высказывании содержится два ограничения:

• число эталонов не превосходит 0.14n.

• эталоны слабо коррелированны.

Наиболее существенным является второе ограничение, поскольку образы, которые сеть должна обрабатывать, часто очень похожи. Примером могут служить буквы латинского алфавита. При обучении сети Хопфилда (3) распознаванию трех первых букв (см. рис. 1 а, б, в), при предъявлении на вход сети любого их эталонов в качестве ответа получается образ, приведенный на рис. 1 г (все образы брались в рамке 10 на 10 точек).

В связи с такими примерами первый вопрос о качестве работы сети ассоциативной памяти звучит тривиально: будет ли сеть правильно обрабатывать сами эталонные образы (т. е. не искажать их)?

Мерой коррелированности образов будем называть следующую величину:

Зависимость работы сети Хопфилда от степени коррелированности образов можно легко продемонстрировать на следующем примере. Пусть даны три эталона x>1, x>2, x>3 таких, что

(4)

Для любой координаты существует одна из четырех возможностей:

В первом случае при предъявлении сети q-го эталона в силу формулы (3) получаем

так как все скалярные произведения положительны по условию (4). Аналогично получаем в четвертом случае x'>j = -1.

Во втором случае рассмотрим отдельно три варианта

так как скалярный квадрат любого образа равен n, а сумма двух любых скалярных произведений эталонов больше n, по условию (4). Таким образом, независимо от предъявленного эталона получаем x'>j = 1. Аналогично в третьем случае получаем x'>j = -1.

Окончательный вывод таков: если эталоны удовлетворяют условиям (4), то при предъявлении любого эталона на выходе всегда будет один образ. Этот образ может быть эталоном или «химерой», составленной, чаще всего, из узнаваемых фрагментов различных эталонов (примером «химеры» может служить образ, приведенный на рис. 1 г). Рассмотренный ранее пример с буквами детально иллюстрирует такую ситуацию.

Приведенные выше соображения позволяют сформулировать требование, детализирующие понятие «слабо коррелированных образов». Для правильного распознавания всех эталонов достаточно (но не необходимо) потребовать, чтобы выполнялось следующее неравенство

Более простое и наглядное, хотя и более сильное условие можно записать в виде

Из этих условий видно, что, чем больше задано эталонов, тем более жесткие требования предъявляются к степени их коррелированности, тем ближе они должны быть к ортогональным.

Рассмотрим преобразование (3) как суперпозицию двух преобразований:

(5)

Обозначим через

— линейное пространство, натянутое на множество эталонов. Тогда первое преобразование в (5) переводит векторы из R>n в L({x>i}). Второе преобразование в (5) переводит результат первого преобразования


Рекомендуем почитать
Юный техник, 2015 № 11

Популярный детский и юношеский журнал.


Юный техник, 2015 № 09

Популярный детский и юношеский журнал.


Покорители земных недр

Авторы этой книги — горный инженер по технике разведки и геолог-разведчик — знакомят молодежь с одной из ведущих технических профессий в геологоразведочном деле — с работой первых помощников геолога: бурильщиков и буровых мастеров. Рассказывают о роли бурения скважин в различных отраслях народного хозяйства. Прослеживают развитие техники бурения от простейшего ручного бура до автоматизированных буровых установок. Раскрывают романтику и реальность профессии первооткрывателей земных недр.Для учащейся молодежи, выбирающей будущую профессию, а также для работников, занимающихся вопросами профориентации школьников.


Техническое обеспечение безопасности бизнеса

Алешин Александр Павлович - начальник службы безопасности коммерческой организации. Базовое образование и трудовая деятельность в различных коммерческих структурах позволили детально вникнуть в проблему охраны бизнеса от различных рисков при помощи технических средств.С появлением собственности возникла и необходимость ее защиты. Степень и возможности защиты в разные периоды развития человеческого общества были различны и зависели от уровня экономического развития общества и наличия технических средств защиты.


Изобретения Дедала

Научно-популярная книга английского популяризатора науки и техники, выступавшего в течение многих лет на страницах журнала New Scientist под псевдонимом «Дедал». В живой и увлекательной форме автор рассказывает о смелых, поражающих воображение «идеях» современного Дедала – от твердой «газировки» и электрического садовника до молекулярного гироскопа и магнитного монополя.Написанная с большим юмором, красочно иллюстрированная, книга адресована всем интересующимся достижениями науки и техники.


Занимательная анатомия роботов

В занимательной форме рассказано об исследованиях и разработках важнейших систем современных роботов. Показано, как можно самим выполнить ту или иную систему робота из простейших электронных схем. Приведены практические схемы отечественных и зарубежных любительских конструкций роботов. По сравнению с первым изданием (1980 г) материал значительно обновлён Для широкого круга читателей.