Учебное пособие по курсу «Нейроинформатика» - [18]
Эта глава посвящена выделению функциональных компонентов, составляющих универсальный нейрокомпьютер. Основные компоненты нейрокомпьютера выделяются по следующим признакам:
1. Относительная функциональная обособленность: каждый компонент имеет четкий набор функций. Его взаимодействие с другими компонентами может быть описано в виде небольшого числа запросов.
2. Возможность реализации большинства используемых алгоритмов.
3. Возможность взаимозамены различных реализаций любого компонента без изменения других компонентов.
Однако, прежде чем приступать к выделению компонент, опишем рассматриваемый набор нейронных сетей и процесс их обучения.
Краткий обзор нейронных сетей
Можно по разному описывать «зоопарк» нейронных сетей. Приведем классификацию нейронных сетей по решаемым ими задачам.
1. Классификация без учителя или поиск закономерностей в данных. Наиболее известным представителем этого класса сетей является сеть Кохонена, реализующая простейший вариант решения этой задачи. Наиболее общий вариант решения этой задачи известен как метод динамических ядер [224, 262].
2. Ассоциативная память. Наиболее известный представитель — сети Хопфилда. Эта задача также позволяет строить обобщения. Наиболее общий вариант описан в [78–80].
3. Аппроксимация функций, заданных в конечном числе точек. К сетям, решающим эту задачу, относятся персептроны, сети обратного распространения ошибки.
В центре нашего внимания будут сети, предназначенные для решения третьей задачи, однако предложенная структура нейрокомпьютера позволяет описать любую сеть. Конечно, невозможно использовать учитель, предназначенный для построения ассоциативной памяти, для решения задачи классификации без учителя и наоборот.
Среди сетей, аппроксимирующих функции, необходимо выделить еще два типа сетей — с дифференцируемой и пороговой характеристической функцией. Дифференцируемой будем называть сеть, каждый элемент которой реализует непрерывно дифференцируемую функцию. Вообще говоря, альтернативой дифференцируемой сети является недифференцируемая, а не пороговая, но на практике, как правило, все недифференцируемые сети являются пороговыми. Отметим, что для того, чтобы сеть была пороговой, достаточно вставить в нее один пороговый элемент.
Основное различие между дифференцируемыми и пороговыми сетями состоит в способе обучения. Для дифференцируемых сетей есть конструктивная процедура обучения, гарантирующая результат, если архитектура сети позволяет ей решит задачу (см. разд. «Оценка способности сети решить задачу» — метод двойственного обучения (обратного распространения ошибки). Следует заметить, что при использовании обучения по методу двойственности так же возникают сложности, типа локальных минимумов. Однако существует набор регулярных процедур, позволяющих с ними бороться (см. [91]). Для обучения пороговых сетей используют правило Хебба или его модификации. Однако, для многослойных сетей с пороговыми элементами правило Хебба не гарантирует обучения. (В случае однослойных сетей — персептронов, доказана теорема о достижении результата в случае его принципиальной достижимости). С другой стороны, в работе [146] доказано, что многослойные сети с пороговыми нейронами можно заменить эквивалентными двухслойными сетями с необучаемыми весами первого слоя.
Выделение компонентов
Первым основным компонентом нейрокомпьютера является нейронная сеть. Относительно архитектуры сети принцип двойственности предполагает только одно — все элементы сети реализуют при прямом функционировании характеристические функции из класса C>1(E) (непрерывно дифференцируемые на области определения E, которой, как правило, является вся числовая ось).
Для обучения нейронной сети необходимо наличие задачника. Однако чаще всего, обучение производится не по всему задачнику, а по некоторой его части. Ту часть задачника, по которой в данный момент производится обучение, будем называть обучающей выборкой. Для многих задач обучающая выборка имеет большие размеры (от нескольких сот до нескольких десятков тысяч примеров). При обучении с использованием скоростных методов обучения (их скорость на три-четыре порядка превышает скорость обучения по классическому методу обратного распространения ошибки) приходится быстро сменять примеры. Таким образом, скорость обработки обучающей выборки может существенно влиять на скорость обучения нейрокомпьютера. К сожалению, большинство разработчиков аппаратных средств не предусматривает средств для быстрой смены примеров. Таким образом, задачник выделен в отдельный компонент нейрокомпьютера.
При работе с обучающей выборкой удобно использовать привычный для пользователя формат данных. Однако, этот формат чаще всего непригоден для использования нейросетью. Таким образом, между обучающей выборкой и нейросетью возникает дополнительный компонент нейрокомпьютера — предобработчик. Из литературных источников следует, что разработка эффективных предобработчиков для нейрокомпьютеров является новой, почти совсем не исследованной областью. Большинство разработчиков программного обеспечения для нейрокомпьютеров склонно возлагать функции предобработки входных данных на обучающую выборку или вообще перекладывают ее на пользователя. Это решение технологически неверно. Дело в том, что при постановке задачи для нейрокомпьютера трудно сразу угадать правильный способ предобработки. Для его подбора проводится серия экспериментов. В каждом из экспериментов используется одна и та же обучающая выборка и разные способы предобработки входных данных сети. Таким образом, выделен третий важный компонент нейрокомпьютера — предобработчик входных данных.
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.