Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [15]

Шрифт
Интервал

Лоренц пришел к выводу, что система настолько чувствительна к начальным условиям, что даже небольшие различия в двоичном представлении чисел заставляют сделать абсолютно разные прогнозы. Сегодня известно, что предсказать погоду более чем за две недели невозможно, какой бы мощный компьютер мы ни использовали. Это явление будет подробнее рассмотрено в главе 5.


Динамические системы

Изучение хаотических систем, как и проблема трех тел с взаимным притяжением, требует введения нового понятия — динамической системы. Введение динамических систем следует из уравнений Гамильтона, но эти системы могут использоваться в самых разных областях, от метеорологии до социологии. Динамические системы применяются в физике, но представляют собой не физическую теорию, а отрасль математики. Понять, как работают динамические системы, очень важно для возможности прогнозировать поведение газа, как будет видно в следующей главе.

Идея динамической системы появляется, если с новой точки зрения посмотреть на гамильтониан. Вспомним, что уравнения Гамильтона говорят нам, как изменяются импульсы и положения во времени, то есть при заданных начальных положении и импульсе мы можем сделать вывод о движении частицы для любого момента в будущем.

Возьмем очень маленький промежуток времени. Если мы знаем положение и импульс нашей частицы в определенный момент, то уравнения Гамильтона дадут нам положение и импульс этой частицы в последующий момент. Как только мы узнаем эти положение и импульс, мы снова можем применить уравнения Гамильтона, и так далее. То есть эти уравнения можно понимать как ряд инструкций для поиска клада: исходные положение и импульс показывают нам, где мы должны начинать искать.

На карте сказано: «Два шага вправо», — и мы двигаемся туда. В случае с частицей именно уравнения Гамильтона указывают нам, куда двигаться. Затем мы снова смотрим инструкции: «Два шага вперед», — и получаем наше новое положение, и так далее.

Это можно проиллюстрировать следующим образом.



Итак, уравнения Гамильтона — это серия инструкций для поиска следующей точки траектории при заданном начальном положении, только траектории живут не в привычном пространстве, а в фазовом, которое, как мы помним, включает в себя как положения, так и импульсы. Таким образом, уравнения Гамильтона — это просто правило для описания изменения определенной системы в каждый промежуток времени, если заданы начальные условия.

Теперь пойдем немного дальше. У нас есть два элемента: положение частицы в абстрактном пространстве из N измерений и правило для нахождения ее следующего положения. В нашем случае пространство — это пространство положений и импульсов, а правило задано уравнениями Гамильтона. Что произошло бы, если бы мы воспользовались другим правилом? И другим пространством? Мы бы получили другую систему, более общую, которая называется динамической системой.

Итак, динамическая система — это некое абстрактное пространство, также известное как фазовое пространство, и правило для получения следующего положения исходя из начального. Любая система, которую можно описать таким образом, — динамическая. Это необязательно должны быть физические системы: любой объект, развивающийся во времени, может быть описан как динамическая система. Все выводы, которые мы сможем сделать о динамических системах, будут справедливы для любой системы, которую можно выразить таким же образом. Поскольку количество проявлений, которые можно выразить как динамическую систему, огромно, мы получим мощную теорию с удивительно большим количеством видов применения. Даже человеческий мозг может быть смоделирован подобным образом: состояние каждого нейрона определяет положение в абстрактном пространстве, а правила взаимодействия между нейронами представляют изменение системы. Практически любой процесс, который подразумевает изменение во времени, может быть рассмотрен как динамическая система.

Некоторые динамические системы демонстрируют поведение, которое кажется стихийным, но это справедливо не всегда. Например, камень, брошенный ребенком, описывает параболическую траекторию, и его движение представляет собой динамическую систему, которая при этом полностью предсказуема. Даже динамические системы высокой сложности могут порождать очень простые модели. В целом хаотичное или нехаотичное поведение системы задано как законами, управляющими ею, так и начальными условиями движения.

Теория хаоса изучает динамические системы, поведение которых непредсказуемо, причем хаотичное поведение могут демонстрировать даже простые системы.

Рассмотрим функцию под названием логистическое отображение, которое описывает движение только в одном измерении, с единственной координатой х. Предположим, что мы начинаем с некоторого числа х: логистическое отображение дает нам правило для получения следующего х с помощью простых умножений и вычитаний.

Математическая формула для его нахождения следующая:

x>n + 1 = r·x>n·(1 — x>n),

где — некий параметр, который мы можем произвольно изменить.

Предположим, что мы берем r = 4 и начинаем с х>1= 0,5. Тогда х>2 равно:


Еще от автора Эдуардо Арройо
Вселенная погибнет от холода. Больцман. Термодинамика и энтропия

Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.