Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [14]

Шрифт
Интервал

На первый взгляд в проблеме трех тел нет ничего особенного. Можно взять, например, Солнце, Землю и Луну — три тела с взаимным гравитационным притяжением. Мы знаем, что Земля вращается вокруг Солнца, а Луна, в свою очередь, — вокруг Земли. Решение кажется элементарным. Однако наше описание очень сильно упрощено по сравнению с тем, что происходит в действительности. Луна притягивается не только Землей, но и Солнцем; кроме того, сила солнечного притяжения меняется в зависимости от положения тел.

Земля, в свою очередь, испытывает притяжение не только Солнца, но и Луны. Хотя при первом приближении можно считать влияние Луны незначительным, но если мы хотим найти точные траектории движения, этого делать нельзя.

* * *

АНРИ ПУАНКАРЕ (1854–1912)

Этот французский физик и математик внес огромный вклад в обе науки. Кроме того, что он был первооткрывателем детерминированного хаоса, Пуанкаре первым изучил свойства уравнений Гамильтона в качественном виде, получив огромное количество данных о поведении их решений.

Пуанкаре также был ключевой фигурой в развитии топологии, изучающей характеристики форм и пространств, которые остаются постоянными после деформации. Выдвинутая им гипотеза о свойствах сферы была доказана всего лишь десять лет назад. Кроме работ в области математики, Пуанкаре был одним из авторов специальной теории относительности и получил верные преобразования пространственно-временных координат еще до того, как Эйнштейн сформулировал свою теорию. Поэтому наиболее общие преобразования координат в релятивизме называются преобразованиями Пуанкаре.

Ученый не ограничивался математикой, а был еще и горным инженером и в течение жизни работал над различными инженерными проектами, такими как развитие сети французских железных дорог.



* * *

В 1860 году, в честь дня рождения короля Швеции и Норвегии Оскара II (1829–1907), был проведен конкурс, посвященный решению проблемы трех тел. Победившая статья должна была быть напечатана в математическом журнале под патронатом самого короля.

Пуанкаре, который уже тогда был известным математиком, представил статью с возможным решением и выиграл конкурс. Однако незадолго до публикации в его математических рассуждениях обнаружилась важная ошибка, и Пуанкаре вынужден был исправить ее, добавив сотню страниц к оригиналу. И все же конечный результат, хотя и содержал революционное открытие, не решал проблему. Пуанкаре удалось доказать, что невозможно найти ее аналитическое решение, то есть можно решить проблему трех тел с помощью компьютера, используя приближения, но не существует точной математической формулировки, чтобы это решение описать.

Ученый изучал различные возможные орбиты в фазовом пространстве и сделал важнейшее открытие: минимальные различия в начальном положении трех тел дают огромные расхождения в их конечном положении. То есть похожие начальные условия порождают абсолютно разные орбиты. При одной и той же отправной точке может получиться так, что одно из тел отлетит вдаль или будет описывать непериодические случайные орбиты. При данных начальных положениях и импульсах спрогнозировать последующее поведение трех тел невозможно. Сегодня это называется чувствительностью к начальным условиям и является одним из необходимых условий хаоса.

Чувствительность к начальным условиям могла объяснить явления, которые, как казалось до последнего времени, противоречат ньютоновой механике. Если Вселенная представляет собой отлаженный механизм, в ней нет места случайным фактам: когда мы подбрасываем игральный кубик, результат предопределен и может быть предсказан с помощью уравнений Гамильтона. Однако кубик — это система, чувствительная к начальным условиям, так что наименьшее отклонение от начальной скорости и положения ведет к совершенно другому результату. При таком подходе случайность — это только проявление этого свойства, общего для сложных систем, в которых больше одной частицы, как в случае с газами.

Открытие Пуанкаре, с одной стороны, радует, потому что объясняет такое явление, как случайность, в рамках законов физики, но с другой стороны — обескураживает: чувствительность к начальным условиям делает поведение некоторых систем непредсказуемым. Это крайне неудобно, особенно если учесть, что любая физическая система состоит из большого числа взаимно притягивающихся и взаимно отталкивающихся тел, таких как атомы или электроны, и, следовательно, любая система превращается в потенциально непредсказуемую.

Конечно, ситуация не так безнадежна, как может показаться на первый взгляд, но для того, чтобы осознать это, необходимы новые математические инструменты, которые позволили бы изучать нелинейные системы, то есть системы с хаотическими элементами.

Несмотря на то что открытие Пуанкаре произошло в конце XIX века, изучение нелинейных систем не продвинулось до 60-х годов прошлого века, пока метеоролог Эдвард Лоренц (1917–2008), неудовлетворенный математическим аппаратом, которым тогда пользовались в его сфере деятельности, не расширил работу Пуанкаре, сформулировав теорию хаоса.

Открытие к Лоренцу пришло случайно: в его распоряжении был компьютер, с помощью которого ученый мог смоделировать погоду на неделю. При данном метеорологическом состоянии в определенный момент времени компьютер вычислял давление и температуру на следующую неделю. Однажды Лоренц решил сэкономить время и начал моделирование, пользуясь лишь частью данных, полученных за предыдущий день. К его удивлению, оказалось, что при вводе одних и тех же начальных величин компьютер делает абсолютно разные прогнозы. Каким-то образом одни и те же алгоритмы, примененные почти к одним и тем же начальным условиям, давали другие результаты.


Еще от автора Эдуардо Арройо
Вселенная погибнет от холода. Больцман. Термодинамика и энтропия

Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.