Том 35. Пока алгебра не разлучит нас. Теория групп и ее применение - [40]
121
ЛЕВИ-СТРОСС: Я помню, как впервые прикоснулся к этой новой музыке.
С малых лет родители по воскресеньям водили меня в оперу Гарнье и другие концертные залы. Не забывайте, моим прадедом по материнской линии был скрипач Исаак Стросс (Штраусс), который работал с Оффенбахом и был знаком с Россини.
Дух прадеда сохранился в нашей семье, но история моего знакомства с музыкой окончилась произведениями Вагнера. Я открыл для себя Шёнберга, Альбана Берга, Антона Веберна и испытал подлинную страсть к звукам, которые услышал в первый раз. Кажется, я так и не смог привыкнуть к их творчеству. Не говоря уже о сериалистах, например о Лучано Берио, которые выступают за равноправие не только частот звуков, но и их длительности, тембра и любых других измеримых параметров.
Это направление разочаровало меня и совершенно сбило с толку, поскольку некоторые голоса «Симфонии» выкрикивали тексты из моей книги «Сырое и приготовленное». Но я допускаю, что перестать быть человеком XIX века не так-то просто.
ВЕЙЛЬ: Я не удивлен, что эта музыка показалась вам принципиально новой, так как многие шедевры додекафонической музыки написаны на основе латинского квадрата. Вы уже знаете, что латинский квадрат — всего лишь таблица, в которой определенное множество символов (в нашем случае — 12 нот) записано так, что в каждой строке и в каждом столбце содержатся все символы множества. На первом шаге выбирается последовательность, состоящая из 12 нот, на основе которой по установленным правилам строится латинский квадрат. Следовательно, существует столько же «руководств по музыкальной композиции», сколько и упорядоченных последовательностей нот до, до-диез, ре, ре-диез, ми, фа, фа-диез, соль, соль-диез, ля, ля-диез и си, всего 479001600 последовательностей.
ЛЕВИ-СТРОСС: Это меньше, чем «Сто тысяч миллиардов стихотворений» Кено.
ВЕЙЛЬ: Однако это число достаточно велико, чтобы композиторы могли попрежнему испытывать иллюзию свободы творчества, не правда ли? Как я уже говорил, суть метода заключается в том, чтобы упорядочить 12 нот, например следующим образом:
ми — соль — фа-диез — ля — соль-диез — до — фа — ре — ре-диез —
— до-диез — си — ля-диез.
В ключе соль эта последовательность записывается так:
122
ми соль фа-диез ля соль-диез до фа ре ре-диез до-диез си ля-диез
а в ключе фа — следующим образом:
ми соль фа-диез ля соль-диез до фа ре ре-диез до-диез си ля-диез
Следовательно, первая строка таблицы будет выглядеть так:
ми | соль | фа-диез | ля | соль-диез | до | фа | ре | ре-диез | до-диез | си | ля-диез
Первую строку таблицы можно записать и по-другому, определив место каждой ноты в «группе часов». При выполнении операций, позволяющих построить весь латинский квадрат на основе первой строки, крайне полезно сопоставить «полдень» «группы часов» первой выбранной нами ноте, то есть сделать ноту ми нейтральным элементом группы.
Следовательно, повернем «часы» так, чтобы нота ми заняла положение, которое обычно занимает нота до, после чего скопируем числа последовательности.
123
Напомню, что мы записали числа в квадратных скобках, чтобы указать: [3] обозначает не только число 3, но и все числа, которые можно получить, прибавив или отняв 12: 3, 15, 27,—9,—21. Таким образом, первую строку нашего латинского квадрата можно записать в следующем виде:
[0] | [3] | [2] | [5] | [4] | [8] | [1] | [10] | [11] | [9] | [7] | [6]
ЛЕВИ-СТРОСС: Понятно. Каким будет второй шаг?
ВЕЙЛЬ: После того как мы получили основную последовательность, заполним первый столбец таблицы, применив инверсию. Любые две ноты первой строки разделены некоторым интервалом. Инверсия заключается в том, чтобы воспроизвести те же самые интервалы в противоположном направлении. К примеру, ми и соль разделены тремя восходящими полутонами (ми — фа — фа-диез — соль), следовательно, инверсия этого интервала заключается в том, чтобы отсчитать три полутона вниз: ми — ре-диез — ре — до-диез. Получается, во второй клетке первого столбца запишем: до-диез. Другой пример: соль и фа-диез разделены восходящим полутоном, следовательно, нужно подняться на один полутон от ноты до-диез, которую мы только что получили. В результате имеем ноту ре. Выполнив аналогичные действия, получим первый столбец:
ми — до-диез — ре — си — до — соль-диез — ре-диез — фа-диез — фа —
соль — ля — ля-диез.
Теперь, господин Леви-Стросс, скажите мне, что означает слово «обратный» применительно к теории групп?
ЛЕВИ-СТРОСС: Элемент группы называется обратным другому, если результат операции над этими элементами — нейтральный элемент.
ВЕЙЛЬ: Именно! Я хочу показать, что обращение интервалов — это всего лишь особый способ, позволяющий найти обратные элементы «группы часов». Рассмотрим первый случай: нота соль соответствует элементу [3]. Какой элемент будет обратным для [3]? Велик соблазн сказать, что этим элементом будет [—3], но мы рассматриваем только положительные числа, поэтому к исходному элементу нужно прибавить 12. Получим [9], который действительно будет обратным [3], так как
[3] + [9] = [12] = [0],
то есть нейтральному элементу. А какая нота соответствует [9]?
На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.