Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [14]
В присутствии хаоса реальная и прогнозная траектория системы в среднесрочном и долгосрочном периоде будут расходиться.
Несмотря на то что все французские математики находились в тени Пуанкаре, на протяжении большей части XX столетия никто не предпринимал серьезных попыток подробно изучить гомоклинические сети и хаотические орбиты.
Между открытиями Пуанкаре и началом современных исследований хаоса прошло очень много времени. Так случилось потому что, во-первых, была открыта квантовая механика, которой уделяли внимание несколько поколений физиков и математиков. Если в квантовой механике случайность оказывает влияние на различные события новым, неизвестным образом, зачем вводить случайность в классической механике, рассматривая чувствительность к начальным условиям? Во-вторых, идеи Пуанкаре, Адамара и Дюгема были высказаны слишком рано, когда еще не существовало средств для их дальнейшего развития, и только с появлением компьютеров стало возможным произвести необходимые сложные вычисления и численный анализ.
* * *
МАКС БОРН (1882–1970). БОРЬБА С ХАОСОМ
Этот знаменитый физик, создатель квантовой механики, в 1955 году вновь подчеркнул, какую важную роль в физике играет высокая чувствительность системы к начальным условиям, Борн задался вопросом: является ли классическая механика детерминированной? Чтобы найти ответ, он рассмотрел модель крайне нестабильного газа, предложенную Хендриком Антоном Лоренцем в 1905 году для объяснения теплопроводности металлов. По сути, каждая частица газа Лоренца ведет себя так же, как бильярдный шар в моделях Адамара и Синая: эта частица (допустим, электрон) при движении и столкновении с рядом препятствий (например, с атомами металла) отклоняется от траектории, и в результате малейшее различие в начальных условиях порождает два совершенно разных состояния. И вновь, если бы положение и скорость частицы можно было определить с очень высокой точностью, то ее состояние в последующие моменты времени (в прошлом или в будущем) можно было бы определить однозначно.
В своей речи при получении Нобелевской премии по физике в 1954 году Борн привел еще один пример: представьте себе частицу, которая движется без трения вдоль прямой между двумя стенами, причем соударение частицы со стенами абсолютно упругое. Частица движется с постоянной скоростью, равной начальной скорости, назад и вперед. Если мы точно знаем скорость частицы, то можем определить, где она будет находиться в любой момент времени. Но если допускается даже небольшая погрешность в измерении скорости, то неточность при измерении положения частицы в последующие моменты времени будет нарастать, а через достаточное время станет сопоставима с расстоянием между стенами. Следовательно, предсказать положение частицы на достаточно большом промежутке времени невозможно. Чувствительность к начальным условиям — составная часть классического детерминизма.
* * *
Шел XX век, и работы Пуанкаре были продолжены представителями двух математических школ: по одну сторону океана — американской, в частности Биркхофом и Смэйлом, по другую сторону — советской школой, основанной Ляпуновым (главными ее представителями были Колмогоров и Арнольд). Влияние Пуанкаре оставалось заметным, однако его идеи о гомоклинических точках на долгое время были забыты.
В работах Джорджа Дэвида Биркхофа (1884–1944) влияние работ Пуанкаре прослеживается при рассмотрении качественных характеристик дифференциальных уравнений. В своей книге «Динамические системы» (1927), где впервые упоминается термин «динамическая система», этот американский математик описывает теорию динамических систем и заходит дальше, чем Пуанкаре, в анализе кривых, определяемых дифференциальными уравнениями. Иными словами, Биркхоф использовал наследие Пуанкаре и развил его идеи в новых направлениях.
Говоря об американской математической школе, нельзя обойти вниманием фигуру Стивена Смэйла (род. 1930), удостоенного в 1966 году Филдсовской премии за вклад в теорию динамических систем. Смэйл находился под влиянием сразу трех наиболее важных традиций изучения динамических систем и хаоса, а именно: забытой традиции, начатой Пуанкаре, к которой принадлежал Биркхоф; русской математической школы, объединившейся с английской усилиями Соломона Лефшеца во время холодной войны, и, наконец, традиции аналитико-топологического изучения дифференциальных уравнений, начатой Мэри Люси Картрайт (1900–1998) и Джоном Идензором Литлвудом (1883–1977) в Великобритании на основе трудов Ван дер Поля.
Бальтазар Ван дер Поль (1889–1959) был голландским инженером-электронщиком, который в «золотые двадцатые» обнаружил предельный цикл (об этом понятии мы уже говорили в первой главе) в нелинейном дифференциальном уравнении, которое описывало поведение электронных ламп, имевших огромное значение в сфере телекоммуникаций. Это уравнение имело траекторию-решение в форме замкнутой кривой, которая притягивала к себе все ближайшие траектории. В 1945 году, когда союзники вовсю работали над созданием радара, Картрайт и Литлвуд доказали, что в окрестностях этого предельного цикла наблюдалось сложное непериодическое движение — это был хаос!
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.