Том 3. Простые числа. Долгая дорога к бесконечности - [22]

Шрифт
Интервал


Магические суммы

Как известно, числа имеют особые символические значения, связанные с различными мистическими верованиями. В западном мире большинство таких символических значений имеет свои корни в Библии или в пифагорейской школе. «Все познаваемое имеет число. Ибо без него невозможно ничего ни понять, ни познать», — писал ученик Пифагора, греческий математик и философ Филолай из Кротона (ок. 480 г. дон. э.).

В эпоху мрачного средневековья передача «культуры чисел» свелась к минимуму. Католическая церковь провела четкое разграничение между различными философскими концепциями мира и теми неоспоримыми принципами, которые соответствовали ее учению. Лишь одной традиции удалось в некоторой степени преодолеть эту нетерпимость: картам Таро. Хотя церковь в конце концов осудила эту систему символов, нумерология Таро сохранилась во многих текстах, которые были настолько двусмысленными, что было неясно, идет там речь о гадании или об арифметике.

Имея в основе десятичную систему счисления, нумерология Таро придавала особое значение первым девяти числам. Число 1 символизировало единство и уникальность, число 2 было символом различия и воспроизводства; число 3 представляло направление, в котором развиваются свойства двойки при добавлении единицы: 2 + 1. Аналогично число 7 представляло собой результат развития потенциала числа шесть: 7 = 6 + 1 и так далее.

Таким образом, начиная с единицы, устанавливаются основные принципы для первых девяти чисел и возможность сведения любого другого числа к одному из них. Именно здесь и появляются «магические суммы». Идея состоит в том, чтобы сложить все цифры в данном числе и таким образом свести их к одной цифре. Например, возьмем число 47 и сложим его цифры, пока не получим одну: 4 + 7 = 11 = 1 + 1 = 2. Таким образом, число 47 наследует символизм числа 2, но находится на более высоком уровне. Другой пример:

157 = 1 + 5 + 7 = 13 = 1 + 3 = 4.

Операции сложения и умножения также можно выполнить с помощью сведения к одной цифре. Например, чтобы сложить числа 248 и 386, мы сначала сведем их к одной цифре

248 = 2 + 4 + 8 = 14 = 1 + 4 = 5;

396 = 3 + 9 + 6 = 18 = 1 + 8 = 9

и сложим полученные результаты:

9 + 5 = 14 = 1 + 4 = 5.

Если мы сначала выполним сложение, а потом сведение к одной цифре, мы по лучим тот же результат:

248 + 396 = 644 = 6 + 4 + 4 = 14 = 1 + 4 = 5.

* * *

ЧИСЛА И БУКВЫ

В греческой и еврейской культурах буквы алфавита были также связаны с числами, поэтому слова могли иметь различные мистические смыслы. Процесс заключался в сложении чисел, связанных с каждой буквой. Чтобы сравнить два слова, нужно было сравнить соответствующие числа. Слово, дающее большее число, считалось более важным. По легенде превосходство Ахилла над Гектором объяснялось следующими вычислениями: слово Ахилл соответствует числу 1276, а слово Гектор — лишь 1125.

* * *

Тот же самый результат получается, когда операции выполняются в другом порядке. При умножении мы поступаем аналогично:

45 х 27 = 1215 = 1 + 2 + 1 + 5 = 9;

45 = 4 + 5 = 9;

27 = 2 + 7 = 9;

9 x 9 = 81 = 8 + 1 = 9.

Мы можем расположить первые сто натуральных чисел в таблице, в каждом столбце поместив эквивалентные числа в соответствии с указанной системой сведения к одной цифре.



Теперь мы можем сказать, что число 78 относится к группе 6, а число 93 — к группе 3. На языке современной математики эти группы называются «классами эквивалентности». Таким образом, можно говорить о «классе числа 3», «классе числа 5» и так далее.

Такой подход, уже известный математикам того времени, позволил Гауссу разработать новый вычислительный инструмент, который оказался очень полезным при определении некоторых свойств простых чисел.

* * *

МАГИЧЕСКИЕ КВАДРАТЫ

Сложение по правилу магических сумм обычно осуществлялось в магических квадратах. Это квадратные таблицы, заполненные числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Во многих культурах встречаются магические квадраты. Они интересовали многих известных математиков: Штифеля, Ферма, Паскаля, Лейбница и даже Эйлера. В настоящее время существуют алгоритмы для построения большинства магических квадратов.



Магический квадрат с гравюры «Меланхолия I» художника эпохи Возрождения, Альбрехта Дюрера.

* * *

Часы Гаусса

Циферблат часов содержит 12 чисел, расположенных по кругу. После числа 12 должно идти число 13, но мы на самом деле возвращаемся к единице и начинаем новый отсчет. Эта система практически не отличается от правила магических сумм, только вместо первых девяти чисел здесь используются первые двенадцать. Мы могли бы составить таблицу, аналогичную предыдущей, только с двенадцатью столбцами вместо девяти. Напишем первые две строки такой таблицы:



Это именно то, что мы делаем каждый раз, когда смотрим на часы с цифровым циферблатом. Чтобы определить время после полудня, мы считаем до 12, а затем начинаем сначала с единицы. Например, когда мы видим на часах цифры 17:00, мы знаем, что это означает «5 часов дня», так как число 17 согласно нашей таблице находится в том же «классе», что и 5. Так у Гаусса появилась идея использовать различные часы или, точнее, разные циферблаты часов. Например, для часов, на циферблате которых нанесены лишь первые пять чисел, можно составить такую таблицу:


Еще от автора Энрике Грасиан
Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.