Том 3. Простые числа. Долгая дорога к бесконечности - [24]

Шрифт
Интервал

Это означает, что если при проверке числа а стрелки укажут на это число а, существует вероятность, что число р окажется простым. Но одной такой проверки недостаточно. Чем больше проверок мы сделаем, тем больше шанс, что число р является простым, но мы не можем утверждать это наверняка. Как мы увидим в седьмой главе, это один из способов, широко используемый современными компьютерами для определения простоты больших чисел.


Мнимые числа

Услышав выражение «мнимые числа», человек, далекий от математики, может подумать, что это еще одна причуда математиков, и будет недалек от истины. Такое мнение разделяли и многие специалисты в области математики, когда им встречались числа настолько экзотические, что к ним относились почти как к призракам.

Но эти призраки настойчиво появлялись при решении уравнений, и вскоре их стало невозможно игнорировать. Их начали использовать при расчетах, и в конце концов они были приняты в качестве решений уравнений и приобрели собственный статус, став одним из фундаментальных понятий в математике и важнейшей темой многих учебников. Было бы неправильно полагать, что они появляются лишь в мире чистой математики. На самом деле мнимые числа являются основным инструментом современной физики и самым различным образом применяются на практике.

Если логарифмы сыграли важную роль в открытиях Гаусса, то мнимые числа были необходимы для результатов, позже полученных Риманом, поэтому небольшое путешествие в «мнимую» страну поможет нам лучше понять развитие теории простых чисел.

Готфрид Лейбниц однажды сказал: «Дух божий нашел тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы». Рассмотрим теперь, что подразумевается под «мнимым корнем из отрицательной единицы».



Мнимые числа имеют практическое применение в электронике. Действительные числа используются для измерения сопротивления — свойства объекта препятствовать прохождению через него электрического тока. А мнимые числа используются для измерения индуктивности (отношения магнитного потока к силе тока в катушке) и емкости (отношения величины электрического заряда к разности потенциалов между пластинами конденсатора).


Квадратный корень из числа а, записываемый как √а, — это такое число, квадрат которого (результат умножения на себя) равен а. Другими словами, √а = b означает, что b>2  = а. Например,

√4 = 2, потому что 2>2  = 4;

√9 = 3, потому что З>2  = 9.

С другой стороны, существует «правило знаков» при умножении и делении: плюс на плюс дает плюс, плюс на минус дает минус, и минус на минус дает плюс.

При записи в символах это выглядит так:

+ x + = +

+ х — = — х + = -

— x — = +

Возьмем в качестве примеров некоторые числа:

5 х 2 = 10;

— 5 x 2 = -10;

— 5 x -5 = 25.

Таким образом, квадрат числа, результат умножения на себя, никогда не может дать отрицательное число. Если исходное число положительное, то «плюс на плюс» даст положительный результат, а если исходное число отрицательное, то «минус на минус» также даст положительный результат. Именно поэтому в принципе невозможно извлечь квадратный корень из отрицательного числа. Например, √-4 не может равняться 2, так как 2 х 2 = 4, и не может равняться —2, так как -2 x -2 = 4.

Таким образом, мы можем утверждать, что √1 = 1, но √—1 не существует. Этот корень не существует как действительное число, но ничто не мешает нам определить его как «мнимое» число, которое мы будем обозначать буквой i:

√-1 = i

Давайте посмотрим, что происходит с числом i при возведении его в различные степени:

√-1 = i

i>2 = (√-1)>2 = -1

i>3  = i>2 х i = -1 х i = — i;

i>4 = i>3  x i = —i x i = i>2 = — (-1) = 1.

Продолжая таким образом, получим:

i>5 = i;

i>6 = -1;

i>7 = — i;

i>8 = 1

Необходимость найти значение квадратного корня из отрицательного числа возникает тогда, когда мы решаем определенные квадратные уравнения. Известно, что уравнения вида ах>2+ Ьх + с = 0 имеют два решения, выражаемые формулой:



Но эта формула не работает, когда число под корнем отрицательное.

В трактате Джироламо Кардано Ars magna («Великое искусство»), опубликованном в 1545 г., была сформулирована следующая задача: «Разделить 10 на две части, произведение которых равно 40». Если мы обозначим эти две части буквами х и у, мы можем записать:

х + у = 10;

x · у = 40.

Выражая у = 10 — х и подставляя во второе уравнение, получаем: х(10 х) = 10x х>2 = 40. Перенося все в правую часть, мы получим квадратное уравнение х>2 — 10x + 40 = 0, решения которого находятся по формуле:



Кардано рассмотрел два числа, являющиеся решениями уравнения:

5 + √-15 и 5 — √-15.

Сознавая, что они являются сложными (комплексными) числами, он проверил, что их сумма равна 10, а их произведение равно 40, и, таким образом, несмотря на «сопротивление ума», они являются решениями данной задачи.

Эти «сложные» корни уравнений часто появлялись при решении многих задач. (Корнями уравнения называются его возможные решения.) Они существовали и смущали математиков, которые не могли принять их в качестве чисел. Декарт сказал о них: «Как истинные, так и ложные корни не всегда бывают действительными, оказываясь иногда лишь мнимыми», тем самым определив один из терминов, который используется до сих пор для обозначения таких корней: «мнимые».


Еще от автора Энрике Грасиан
Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.