Том 28. Математика жизни. Численные модели в биологии и экологии - [23]

Шрифт
Интервал

х>t+1 =>t + by>t + е,

y>t+1 = cx>t + dy>t + f.

Эксперимент Барнсли заключался в определении трех преобразований.



Для произвольной начальной точки с координатами (х, у) путем жеребьевки определялось число 1, 2 или 3. К примеру, если при броске кубика выпадало 1 или 2 очка, выбиралось преобразование 1, если выпадало 3 или 4 очка — преобразование 2, если выпадало 5 или 6 очков — преобразование 3. С помощью соответствующих уравнений определялись координаты новой точки >t + 1, y>t + 1). Далее путем жеребьевки выбиралось новое преобразование, которое применялось к предыдущей точке для определения координат новой точки, и т. д.

Обратите внимание, что в эксперименте, результатом которого является треугольник Серпинского, а и d всегда равны 0,5, b и с — 0. Значения е и f изменяются для каждого преобразования. Другие природные фракталы, например листья растений, ветки папоротника и т. д., можно получить, рассмотрев различные значения а, Ь, с, d, е и f.

Описанная процедура, названная системой итерируемых функций, представляет собой один из наиболее интересных методов построения фракталов на компьютере. Эксперимент привел к удивительному результату: многие биологические формы и структуры являются фракталами. Если, к примеру, мы применим преобразования (повороты, переносы, изменение масштаба) к точкам, представляющим клетки, то получим структуру, которая будет фракталом, изображающим, к примеру, лист растения.

Глава 4

Судоку жизни

Одна из классических научных задач — наблюдение за природой и проведение экспериментов. Наблюдение явления подразумевает сбор каких-либо данных. В качестве примера приведем изучение загрязнения окружающей среды, в котором как индикаторы используются некоторые виды лишайников, количество мутаций определенной бактерии или вес мышей из одного помета. На этом этапе исследования ученый подсчитывает, например, количество муравьев, проходящих через определенное место за минуту, или число красных кровяных телец. Вместо подсчетов в некоторых случаях могут требоваться измерения, например кислотности среды, веса, роста или любых других показателей, значение которых, по определению измерения, будет содержать несколько десятичных знаков.


Таблицы, судоку и матрицы

Данные, собранные в ходе эксперимента, объединяются в таблицы. Допустим, что в оранжерее на четырех грядках растет по семь растений, при этом на каждую грядку вносится свое удобрение. Чтобы выяснить, дает ли оно положительный эффект, по прошествии определенного времени производится подсчет числа листьев на каждом растении. Обозначим это число через х. Подобные данные обычно представлены в виде таблиц.



К примеру, х>23 будет обозначать число листьев растения 2 с удобрением 3, х>74 — число листьев растения 7 с удобрением 4. Математики проводили подобные эксперименты с древних времен, используя так называемые латинские квадраты, то есть таблицы или матрицы, в которых символ (число или сочетание нескольких символов) встречается в каждой строке и каждом столбце только один раз. Разновидностью латинского квадрата является популярная сегодня игра судоку.



Слева — пример популярной японской головоломки судоку, справа — латинский квадрат.


Теперь предположим, что мы хотим дать общее определение таблице, использованной в эксперименте с растениями и удобрениями. Можно сказать, что даны m растений и видов удобрений, и записать представленную выше таблицу в круглых скобках:


Такая форма представления данных называется матрицей. Таким образом, матрица размера m х n — это всего лишь множество из m х n элементов, записанных в m строк и n столбцов. Матрицы обычно обозначаются заглавными буквами — А, В, С и т. д. Они позволяют удобно представлять не только данные, но и системы уравнений. Рассмотрим в качестве примера следующую систему линейных уравнений:


В матричном виде эту систему уравнений можно представить так:


С помощью матриц можно проанализировать также химическую структуру молекулы. К примеру, если мы присвоим произвольные обозначения атомам углерода С в молекуле витамина А, или ретинола, как показано на рисунке



то молекула витамина А будет представлена следующей матрицей.



Обратите внимание, что х>ij = 1, если между атомами i и j существует связь, если же связь между атомами отсутствует, х>ij = 0.

* * *

ПРЕЛЕСТЬ МАТРИЦ — В ИХ РАЗНООБРАЗИИ

Всевозможные обозначения, связанные с матрицами, встречаются очень часто. Разъясним некоторые популярные термины.

Квадратная матрица — это матрица, в которой число строк и столбцов одинаково:


Симметричная матрица — это квадратная матрица, в которой выполняется соотношение х>ij= х>ji:


Единичная матрица — это квадратная матрица, все элементы которой равны 0, и только элементы главной диагонали равны 1. Единичная матрица обозначается буквой Е.


Диагональная матрица — это квадратная матрица, все элементы которой равны 0, за исключением элементов главной диагонали:


Нулевая матрица — матрица (необязательно квадратная), все элементы которой равны 0:


Треугольная матрица — это квадратная матрица, в которой все элементы, расположенные над главной диагональю или под ней, равны 0. Слева представлен пример верхнетреугольной матрицы, справа — нижнетреугольной.


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


25 техник эффективного обучения для интересного изучения математики с ребенком

Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.


100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах.


Укрощение бесконечности. История математики от первых чисел до теории хаоса

Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер. Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю. Эта книга для математиков и всех, кто интересуется историей математики и науки вообще. На русском языке публикуется впервые.


Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.