Том 27. Поэзия чисел. Прекрасное и математика - [21]

Шрифт
Интервал

>2 + q>2  + r>2 = 2·р·q·r не имеет целых положительных решений. В действительности, как доказал Гурвиц, ни одно уравнение вида р>2 + q>2  + r>2 = k·р·q·r не имеет целых положительных решений, за исключением случаев, когда k равно 3 (имеем уравнение Маркова), 1 или 0.

Решения уравнения Маркова р, q и r при р = 1 образуют первую связь с теоремой Гурвица о рациональном приближении. В самом деле, эти решения имеют вид р = 1, q = f>2n-1 и = f>2n+1, где f>k  — соответствующее число Фибоначчи. Первыми двумя числами Фибоначчи являются f>1 = 1 и f>2 = 1, каждое последующее число Фибоначчи определяется как сумма двух предыдущих. Имеем: f>3 = 1 + 1 = 2, f>4 = 3, f>5 = 5, f>6 = 8, f>7 = 13, f>8 = 21, f>9 = 34 и так далее. Числа Фибоначчи встречаются в природе столь же часто, что и золотое сечение, с которым они тесно связаны: если рассмотреть отношение двух последовательных чисел Фибоначчи, f>n+1/f>n, то полученные дроби 2/1, 3/2, 5/3, 8/5, 13/8…, будут всё больше и больше приближаться к золотому числу. Приближение вновь будет описываться теоремой Гурвица:


Это соотношение устанавливает неразрывную связь между числами Маркова и рациональным приближением. Очевидно, что эта связь намного прочнее.

Как мы уже отмечали, из-за золотого сечения рациональное приближение, описываемое теоремой Гурвица, нельзя улучшить. Это справедливо для золотого числа Ф и всех иррациональных чисел, эквивалентных ему с точки зрения рационального приближения. Иными словами, речь идет об иррациональных числах вида (m·Ф + n)/(р·Ф + q), где m, n, р, q — произвольные целые числа, которые удовлетворяют условию m·q — n·р = ± 1.



Математик Андрей Андреевич Марков совершил важные открытия в теории чисел и теории вероятностей.


Оставим в стороне золотое сечение и все иррациональные числа, эквивалентные ему. Гурвиц доказал, что его теорема допускает более точную оценку, так как константу 1/√5 можно заменить другой, меньшей константой 1/√8: для произвольного иррационального числа а, за исключением золотого числа и эквивалентных ему, существует бесконечное множество дробей p/q таких, что


Это приближение нельзя улучшить: если принять а = √2, то его рациональное приближение не может быть точнее, чем допускает константа 1/√8, умноженная на число, обратное квадрату знаменателя.

Однако если мы оставим в стороне √2 и все эквивалентные ему, то сможем еще больше улучшить рациональное приближение, заменив константу 1/√8 другой, меньшей константой 5/√221. Для любого иррационального числа а, за исключением золотого числа, квадратного корня из 2 и эквивалентных им, существует бесконечно много дробей вида p/q таких, что


Читатель уже наверняка догадался, что теперь существует еще одно иррациональное число, для которого нельзя улучшить это рациональное приближение. Это число — √221. Если исключить его из рассмотрения, то можно получить новое, еще более точное рациональное приближение — 13/√1517, для которого, в свою очередь, также существует «нежелательное» иррациональное число. Так мы постепенно придем к предельному значению 1/3: для любого иррационального числа а, за исключением полученного списка иррациональных чисел и эквивалентных им, существует бесконечно много дробей вида p/q таких, что


В романе и в реальности, отзвуком которой он является, переплетаются судьбы персонажей, и из тесной паутины взаимоотношений рождается свет, озаряющий тайные стороны человеческой природы.

Подобно тому, как Мартин Марко живет в страхе, опасаясь политических репрессий режима Франко, Хулиту душат нормы национально-католической морали. В то время как для Марко возможен только один выход — сдаться, Хулита и ее жених смогли найти выход из ситуации, преодолеть все препятствия и начали встречаться в доме свиданий. Села великолепно передает все моральные противоречия, с которыми сталкиваются его герои. С одной стороны, донья Виситасьон Леклерк, мать Хулиты и сестра доньи Росы, воплощает лицемерную мораль, которая была столь по душе католическим сановникам того времени. Так, донья Виситасьон из сострадания жертвует деньги на крещение «китайских младенцев», за что, предположительно, Господь дарует ей Царствие Небесное после смерти. С другой стороны, Села рисует образ отца Хулиты, дона Роке Моисеса, бездельника, который удачно женился по расчету. Несколько сцен позволяют понять, какой была национал-католическая мораль времен Франко. В одном из эпизодов Хулита и ее отец встречаются на лестнице апартаментов доньи Селии: Хулита возвращается со свидания, а ее отец идет на встречу с одной из своих любовниц.

Подобно тому, как различные грани человеческой природы в романе передаются сплетением судеб его героев, которые кажутся далекими, так и в математике на первый взгляд не связанные между собой результаты скрывают тайные истины. Именно этим свойством обладают числа Маркова и числовые константы, которые упоминаются в теореме Гурвица, по мере того как мы уточняем рациональное приближение (это золотое число, квадратный корень из 2 и последующие иррациональные числа, для которых нельзя получить более точное рациональное приближение).

Ниже приведены первые четыре числа Маркова, то есть решения диофантова уравнения


Еще от автора Антонио Х. Дуран Гуардено
Том 14. Истина в пределе. Анализ бесконечно малых

Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.