Том 27. Поэзия чисел. Прекрасное и математика - [22]

Шрифт
Интервал

>2 + q>2 + r>2 = 3·р·q·r, упорядоченные по возрастанию: 1, 2, 5, 13.

Далее перечислены четыре первые константы, полученные при поиске всё более точных рациональных приближений по теореме Гурвица:

1/√5, 1/√8, 5/√221, 13/√1517.

Подобно тому как жизни Мартина Марко, доньи Росы и Хулиты на страницах «Улья» оказываются неразрывно связанными, так и числа Маркова связаны с рациональными приближениями иррациональных чисел, поскольку именно они определяют различные константы, возникающие при поиске рациональных приближений по теореме Гурвица.

Обратите внимание, что два приведенных выше списка чисел в действительности ничем не отличаются. Чтобы показать это, нужен ключ, который позволит преобразовать числа из первого списка в числа второго списка. Этот ключ нашел немецкий математик Оскар Перрон в 1921 году: 

Подставим в эту формулу m = 1, первое число Маркова, и получим 1/√(9·1 – 4) = 1/√5 — константу, которая фигурирует в теореме Гурвица о рациональном приближении. Подставим в формулу m = 2, второе число Маркова, и получим 2/√(9·4 – 4) = 2/√32 = 1√8 — константу, которая фигурирует в теореме Гурвица, если исключить из рассмотрения золотое число. Если мы подставим в эту формулу m = 5 или 13, то есть третье и четвертое число Маркова соответственно, получим 5/√221 и 13/√1517 — два следующих числа, отсылающих и к теореме Гурвица. Аналогичные действия можно выполнить и для следующих чисел Маркова. С другой стороны, если m, р и q являются решениями уравнения Маркова m>2 + p>2 + q>2 = 3·m·p·q, то исключением, которое будет препятствовать уменьшению константы m/√(9·m>2 — 4) в теореме Гурвица, будет число


и все эквивалентные ему иррациональные числа.

Как видите, в стране чисел, как в большом городе, жизненные пути персонажей пересекаются. Математика больше напоминает улей, чем сухую логическую структуру.

Было бы непростительно не закончить эту главу словами Камило Хосе Селы:

«Утро мало-помалу надвигается, червем проползая по сердцам мужчин и женщин большого города, ласково стучась в только что раскрывшиеся глаза, в эти глаза, которым никогда не увидеть новых горизонтов, новых пейзажей, новых декораций… Но утро, это вечно повторяющееся утро все же не отказывает себе в удовольствии позабавиться, изменяя облик города — этой могилы, этой ярмарки удачи, этого улья…»

Глава 3

Абстрактное и эмоциональное: математика и человеческая природа

Повторим наш мысленный эксперимент, в котором мы обращались к случайному прохожему. На этот раз зададим ему два вопроса. Сначала мы попросим его сгруппировать попарно следующие слова: «литература»/«математика» и «страсть»/«расчетливость». Затем попросим нашего собеседника рассказать о том, как, по его мнению, связаны математика и человеческая природа.

Отвечая на первый вопрос, большинство свяжет литературу со страстью, а математику — с расчетливостью. Нет никаких сомнений и в том, что прохожий скажет: математика и человеческая природа очень далеки друг от друга. Возможно, этот же ответ дадут и многие математики. Математика известна как совокупность абстракций, которые почти или никак не связаны с чувствами. Однако математика — продукт нашего разума в самом чистом виде, и в этом с ней не сравнится почти никакое другое творение человека. Логическая структура нашего разума — важнейшая характеристика человеческого состояния: именно наш мозг в немалой степени определяет то, какие мы есть.

Поэтому неудивительно, что внешность может быть обманчива.

Прежде всего напомним, что благоразумие, согласно толковому словарю, это «рассудительность, обдуманность в поступках», в то время как «страсть» — это «сильно выраженное чувство, воодушевленность» и «крайнее увлечение, пристрастие к чему-либо». Многие не связывают страсть с математикой, но она подобна полю битвы, на котором разгораются сражения между благоразумием и страстью. Мы, математики, знаем, что математика — это неустойчивое равновесие между благоразумием и страстью, тончайшая смесь трезвого расчета и крайнего увлечения, сильное, опьяняющее чувство. Поэтому в поисках доказательства математик руководствуется точным расчетом, который является неотъемлемой чертой строжайшего логического мышления. Однако в моменты, когда математик стремится совершить открытие или сражается с задачей, его охватывает возбуждение.

Предметом описания литературы и одновременно ее источником знаний служит человеческая природа, непреходящая борьба страстей и здравого смысла. Поэтому неудивительно, что большинство связывает литературу и страсть. Однако я осмелюсь заявить, что в этой борьбе между благоразумием и страстями математика играет далеко не последнюю роль. Математика может оказаться удивительно полезной: она способна помочь нам лучше познать себя и глубже понять человеческую природу.


Математика и ее контекст

Это звучит странно, и наш воображаемый прохожий усомнится в том, что математика может помочь людям познать себя. Наверняка многие ученые, которым известны тайны этой науки, также не понимают, как математика способна осветить дно глубокого колодца, которому подобна природа человека. Чтобы возразить скептикам, отмечу, что математике действительно под силу нечто подобное, если рассмотреть ее в нужном контексте. К примеру, под контекстом теоремы мы понимаем загадки истории, сопровождавшие автора или авторов этой теоремы: тех, кто выдвинул теорему, доказал или опроверг ее, или тех, кто безуспешно пытался найти ее доказательство.


Еще от автора Антонио Х. Дуран Гуардено
Том 14. Истина в пределе. Анализ бесконечно малых

Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.