Том 20. Творчество в математике. По каким правилам ведутся игры разума - [20]
Благодаря новым технологиям мы познакомились с фрактальными кривыми, которые едва ли можно было представить еще 50 лет назад. Фракталы были известны уже тогда, однако интерес к ним, возможности их наглядного представления и использования росли с развитием технологий. Первым фракталом была кривая Коха, или снежинка Коха. Если классические кривые строятся как множество значений некой функции, то построение кривой Коха — рекурсивный процесс по определенному алгоритму. Исходной фигурой является квадрат, треугольник или любая другая фигура, стороны которой затем заменяются ломаной линией. Далее процесс повторяется, и этой же кривой заменяется каждое звено ломаной, построенной на предыдущем этапе, в итоге кривая принимает все более неправильную форму:
Первое подробное исследование фракталов было выполнено в 1980-е годы французским математиком польского происхождения Бенуа Мандельбротом. Одно из ключевых понятий, используемых при построении фракталов, — это орбита точки. Для любой функции, например f(х) = х>2, можно рассмотреть орбиту данной точки или последовательность результатов, получаемых при последовательной замене аргумента функции следующим образом:
х = 0,5
f(0,5) = 0,5>2 = 0,25
f(0,25) = 0,25>2 = 0,0625
f(0,0625) = 0,0625>2 = 0,0039
=> Орбита точки 0,5 = {0,5; 0,25; 0,0625; 0,0039; …} —> 0.
Орбита точки х = 0,5 образована убывающей ограниченной последовательностью чисел, которая стремится к 0. Существуют фиксированные орбиты, в частности для х = 0 и x = 1. Орбиты некоторых точек уходят в бесконечность, например, это справедливо для точки x = 2:
х = 2
f(2) = 2>2 = 4
f(4) = 4>2 = 16
f(16) = 16>2 = 256
=> Орбита точки 2 = {2, 4, 16, 256…} —>
Компьютер позволил увидеть, что произойдет с похожей функцией на поле комплексных чисел:
Результат оказался неожиданным и с математической, и с эстетической точки зрения, так как множества точек, не уходившие в бесконечность, принимали при различных значениях с разнообразные и удивительные формы. Эти точки образуют так называемое множество Жюлиа. Комплексные значения с, для которых множество Жюлиа является связным, то есть не разбито на несколько частей или фрагментов, образуют множество Мандельброта, которое выглядит следующим образом:
Математики смогли увидеть множество Мандельброта лишь в 1980 году, и до этого им не приходилось сталкиваться со столь же сложным объектом. Помимо фрактальной природы, ввиду которой части этого множества подобны целому, это множество обладает безграничным разнообразием. Если мы рассмотрим увеличенное изображение любой его части, то увидим, что одни и те же фигуры повторяются в нем снова и снова:
Множество М обладает самоподобием и одновременно изменчивостью бесконечной спирали. Оно являет собой прекрасный пример математического творчества.
С точки зрения топологии фрактальная кривая отличается от традиционных. Принципиальное отличие фрактальных кривых состоит как раз в их бесконечном самоподобии: если увеличить часть традиционной кривой в окрестности любой точки, она будет представлять собой отрезок, в то время как любой увеличенный фрагмент фрактальной кривой, напротив, будет иметь ту же форму, что и исходная кривая. В результате размерность фрактальных объектов не выражается целым числом от 1 до 3, в отличие от традиционных кривых. Размерность кривой Коха, например, равна 1,26186… По сути, несмотря на то что компьютер позволяет наглядно представить различные этапы построения фрактальных объектов, мы никогда не сможем увидеть результат этого процесса, так как он бесконечен. Увидеть окончательные очертания фрактальных кривых нельзя. Когда мы пытаемся поближе рассмотреть их, то видим, что они меняются и выглядят не так, как нам казалось раньше.
* * *
СЪЕДОБНЫЙ ФРАКТАЛ
Фракталы столь часто встречаются в реальном мире, что можно свободно говорить о фрактальной геометрии природы. Однако в природе фракталы обычно обладают не более чем четырьмя уровнями самоподобия, как, например, ветви растений, нервные окончания или подземные водоносные слои. Фрактальная размерность — это характеристика, позволяющая обнаруживать костные патологии и описывать электроэнцефалограммы.
Цветная капуста, изображенная на иллюстрации, в действительности является гибридом, который впервые был обнаружен в Италии в XVI веке. Ее структура представляет собой удивительный пример фрактальной геометрии в природе. Кочан капусты (первый уровень) состоит из уменьшенных копий самого себя (второй уровень), расположенных в форме спирали. Каждая из них, в свою очередь, также состоит из уменьшенных копий самой себя, которые вновь располагаются по спирали (третий уровень). Это же подобие наблюдается и на следующем, четвертом уровне.
Глава 3
Вопросы, которые задает мир
В предыдущей главе мы рассказали о величайших математических творениях за всю историю математики. Сегодня эту науку двигают вперед преимущественно профессионалы, но не исключительно они. Творить математику означает не только создавать великие теоремы, которые войдут в историю, но и ставить задачи, объяснять явления с математической точки зрения, разрабатывать практические методы, позволяющие применять математику в реальной жизни, использовать технологии для развития математики, поиска математических решений и, что самое важное, понимать, когда математический ответ на заданный вопрос является необходимым и достаточным. Творить математику способны многие. Возможно, выводы, к которым они придут, не будут чем-то новым для профессиональных математиков, однако труд любителей и профессионалов по сути ничем не отличается.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.
Лишний вес, состояние хронического стресса, переедание, недовольство собственной внешностью – это наиболее распространенные жалобы 80 % современных женщин. Что делать, если косметика и экстремальные диеты не помогают, а постоянное ощущение нехватки сил не дает жить полноценной жизнью? Как замедлить метаболизм на этапе похудения и удержать массу тела? Как предотвратить переход преддиабета в диабет? Как не дать разрядиться нашей «батарейке» – щитовидной железе? Можно ли победить старение? Какие анализы совершенно бесполезны? Как подготовиться к визиту к эндокринологу? В книге Марины Берковской есть не только ответы на эти вопросы, но и четкие инструкции по управлению гормональным фоном.
Можно ли умереть от разбитого сердца? Действительно ли горе и невзгоды способны фатально повлиять на самый жизненно важный орган нашего организма? Возможно, мы совсем не случайно воспринимаем сердце как символ чувств. Дело в том, что эмоции действительно оказывают на сердце огромное влияние. Но насколько глубока связь между драматичным расставанием с партнером и сердечными заболеваниями? Доктор Никки Стамп исследует в своей книге так называемый «синдром разбитого сердца» – а также делится уникальным опытом, который она приобрела во время своей работы.
Каждый день в мире совершаются открытия и принимаются решения, влияющие на наше будущее. Но может ли кто-то предвидеть, что ждет человечество? Возможна ли телепортация (спойлер: да), как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? В этой книге ведущие мировые специалисты во главе с Джимом Аль-Халили, пользуясь знаниями передовой науки, дают читателю представление о том, что его ждет впереди.
Наше поколение стало свидетелем необычайной победы человеческого разума — начала проникновения в космос. Перед молодежью открываются увлекательные, полные заманчивости перспективы межпланетных путешествий и открытий. Но есть еще и на нашей «обжитой» планете Земля много неизученных «белых пятен», среди них почти неизвестный на всю его глубину Мировой океан с его подводными горами и впадинами, со своим растительным и животным миром, со своими физическими законами. В изучении его большую пользу приносит гидроакустика — сравнительно молодая наука, имеющая большое будущее. Эта наука имеет большое прикладное значение.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.