Том 20. Творчество в математике. По каким правилам ведутся игры разума - [20]
Благодаря новым технологиям мы познакомились с фрактальными кривыми, которые едва ли можно было представить еще 50 лет назад. Фракталы были известны уже тогда, однако интерес к ним, возможности их наглядного представления и использования росли с развитием технологий. Первым фракталом была кривая Коха, или снежинка Коха. Если классические кривые строятся как множество значений некой функции, то построение кривой Коха — рекурсивный процесс по определенному алгоритму. Исходной фигурой является квадрат, треугольник или любая другая фигура, стороны которой затем заменяются ломаной линией. Далее процесс повторяется, и этой же кривой заменяется каждое звено ломаной, построенной на предыдущем этапе, в итоге кривая принимает все более неправильную форму:
Первое подробное исследование фракталов было выполнено в 1980-е годы французским математиком польского происхождения Бенуа Мандельбротом. Одно из ключевых понятий, используемых при построении фракталов, — это орбита точки. Для любой функции, например f(х) = х>2, можно рассмотреть орбиту данной точки или последовательность результатов, получаемых при последовательной замене аргумента функции следующим образом:
х = 0,5
f(0,5) = 0,5>2 = 0,25
f(0,25) = 0,25>2 = 0,0625
f(0,0625) = 0,0625>2 = 0,0039
=> Орбита точки 0,5 = {0,5; 0,25; 0,0625; 0,0039; …} —> 0.
Орбита точки х = 0,5 образована убывающей ограниченной последовательностью чисел, которая стремится к 0. Существуют фиксированные орбиты, в частности для х = 0 и x = 1. Орбиты некоторых точек уходят в бесконечность, например, это справедливо для точки x = 2:
х = 2
f(2) = 2>2 = 4
f(4) = 4>2 = 16
f(16) = 16>2 = 256
=> Орбита точки 2 = {2, 4, 16, 256…} —>
Компьютер позволил увидеть, что произойдет с похожей функцией на поле комплексных чисел:
Результат оказался неожиданным и с математической, и с эстетической точки зрения, так как множества точек, не уходившие в бесконечность, принимали при различных значениях с разнообразные и удивительные формы. Эти точки образуют так называемое множество Жюлиа. Комплексные значения с, для которых множество Жюлиа является связным, то есть не разбито на несколько частей или фрагментов, образуют множество Мандельброта, которое выглядит следующим образом:
Математики смогли увидеть множество Мандельброта лишь в 1980 году, и до этого им не приходилось сталкиваться со столь же сложным объектом. Помимо фрактальной природы, ввиду которой части этого множества подобны целому, это множество обладает безграничным разнообразием. Если мы рассмотрим увеличенное изображение любой его части, то увидим, что одни и те же фигуры повторяются в нем снова и снова:
Множество М обладает самоподобием и одновременно изменчивостью бесконечной спирали. Оно являет собой прекрасный пример математического творчества.
С точки зрения топологии фрактальная кривая отличается от традиционных. Принципиальное отличие фрактальных кривых состоит как раз в их бесконечном самоподобии: если увеличить часть традиционной кривой в окрестности любой точки, она будет представлять собой отрезок, в то время как любой увеличенный фрагмент фрактальной кривой, напротив, будет иметь ту же форму, что и исходная кривая. В результате размерность фрактальных объектов не выражается целым числом от 1 до 3, в отличие от традиционных кривых. Размерность кривой Коха, например, равна 1,26186… По сути, несмотря на то что компьютер позволяет наглядно представить различные этапы построения фрактальных объектов, мы никогда не сможем увидеть результат этого процесса, так как он бесконечен. Увидеть окончательные очертания фрактальных кривых нельзя. Когда мы пытаемся поближе рассмотреть их, то видим, что они меняются и выглядят не так, как нам казалось раньше.
* * *
СЪЕДОБНЫЙ ФРАКТАЛ
Фракталы столь часто встречаются в реальном мире, что можно свободно говорить о фрактальной геометрии природы. Однако в природе фракталы обычно обладают не более чем четырьмя уровнями самоподобия, как, например, ветви растений, нервные окончания или подземные водоносные слои. Фрактальная размерность — это характеристика, позволяющая обнаруживать костные патологии и описывать электроэнцефалограммы.
Цветная капуста, изображенная на иллюстрации, в действительности является гибридом, который впервые был обнаружен в Италии в XVI веке. Ее структура представляет собой удивительный пример фрактальной геометрии в природе. Кочан капусты (первый уровень) состоит из уменьшенных копий самого себя (второй уровень), расположенных в форме спирали. Каждая из них, в свою очередь, также состоит из уменьшенных копий самой себя, которые вновь располагаются по спирали (третий уровень). Это же подобие наблюдается и на следующем, четвертом уровне.
Глава 3
Вопросы, которые задает мир
В предыдущей главе мы рассказали о величайших математических творениях за всю историю математики. Сегодня эту науку двигают вперед преимущественно профессионалы, но не исключительно они. Творить математику означает не только создавать великие теоремы, которые войдут в историю, но и ставить задачи, объяснять явления с математической точки зрения, разрабатывать практические методы, позволяющие применять математику в реальной жизни, использовать технологии для развития математики, поиска математических решений и, что самое важное, понимать, когда математический ответ на заданный вопрос является необходимым и достаточным. Творить математику способны многие. Возможно, выводы, к которым они придут, не будут чем-то новым для профессиональных математиков, однако труд любителей и профессионалов по сути ничем не отличается.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.