Том 20. Творчество в математике. По каким правилам ведутся игры разума - [15]

Шрифт
Интервал

Именно так рассуждал Архимед. Вместо того чтобы рассмотреть многоугольник с п сторонами, он начал с правильного шестиугольника и последовательно удваивал число его сторон. Он дошел до многоугольника с 96 сторонами и вычислил приближенное значение числа π и площади круга с очень хорошей точностью:


Но заслуга Архимеда состоит не в том, что он провел такие трудоемкие расчеты. Во-первых, он показал, что большую часть вычислений можно опустить, если на данном этапе известны периметры и площади вписанного и описанного многоугольника — периметры и площади соответствующих многоугольников на следующем этапе можно вычислить как среднее гармоническое и среднее геометрическое.

Во-вторых, он разработал итеративный метод, на каждом шаге которого полученный результат был точнее, чем на предыдущем. Архимед открыл путь, ведущий к бесконечности. Пройти по этому пути до конца невозможно, но вполне возможно вычислить, что ждет нас в конце.

* * *

АРХИМЕД В XXI ВЕКЕ

С помощью тригонометрии и современных технологий можно повторить вычисления Архимеда, используя рекурсивный метод, в котором применяются правильные многоугольники с числом сторон, равным 2>n. Площадь 2n-угольника, вписанного в окружность единичного радиуса, равна:


Тригонометрия помогает увидеть, что закон, которому подчиняются площади многоугольников, определяется синусами углов вида π/(2>n). Этот закон позволяет найти площадь круга S>c:

Компьютер способен вычислить площадь многоугольника с 1024·2>10 сторонами по предыдущей формуле и показать, что результат близок к ожидаемому: S>1024 = 3,1415923…

* * *

Круг — простейшая из криволинейных фигур. Как же вычислить площадь любой другой фигуры? Зная формулу, которая описывает часть кривой, ограничивающей фигуру, математики могут найти площадь этой фигуры с помощью метода, схожего с методом Архимеда. Допустим, что мы хотим найти площадь фигуры, ограниченной осью абсцисс и кривой у = х>3 между началом координат (0,0) и точкой (1,0).

Эта фигура на иллюстрации выделена серым цветом:



Первым приближением искомой площади будет площадь прямоугольного треугольника с вершинами в точках (0,0), (1,0) и (1,1), равная 1/2. Однако это значение чрезвычайно далеко от истинного.

Метод, о котором мы расскажем далее, называется методом исчерпывания. Архимед использовал его более 2000 лет назад для вычисления площади, ограниченной участком параболы. Первым приближением площади искомой фигуры была площадь треугольника, по форме напоминающего эту фигуру. Теперь мы будем вычислять площадь прямоугольника.

Разделим интервал [0,1] на четыре равных интервала и построим на каждом из них по два прямоугольника — высота одного из них будет равна значению функции на левом конце интервала, высота другого — значению функции на правом конце интервала. Так как f(0) = 0>3 = 0, высота первого прямоугольника будет равна 0:



Искомая площадь S заключена между суммой площадей меньших прямоугольников S>1 (выделены светло-серым) и больших прямоугольников S>s  (выделены темно-серым). Точнее говоря, искомая площадь будет больше первого значения и меньше второго. Вычислим обе эти площади с учетом того, что основания всех прямоугольников одинаковы и равны 1/4, отличаются лишь их высоты:


Среднее значение этих площадей равно: S ~= (S>1 + S>s)/2 = 0,265625. Найдем более точное значение площади, разбив исходный интервал на большее число частей:



Теперь основания всех прямоугольников равны 1/8. И вновь сумма площадей прямоугольников, выделенных темно-серым (S>s), будет больше искомой площади, которая превышает сумму площадей прямоугольников, выделенных светло-серым (S>1).


Их среднее значение равно:

S ~= 0.5·(S>s + S>1) = 0,2539…

Если мы продолжим этот процесс и будем последовательно делить интервал [0,1] на все более мелкие части, то в пределе мы разделим его на бесконечное число частей, получим бесконечное число прямоугольников, а сумма их площадей будет равна площади фигуры, заключенной между графиком кривой и осями координат.

Вопрос в том, как вычислить общую площадь бесконечного числа прямоугольников. Произведенные выше расчеты показывают, что искомое значение должно быть близко к 0,25, так как промежуточные результаты равны 0,2656… и 0,2539…

Чтобы получить окончательный ответ, рассмотрим, как мы вычислили два предыдущих значения. Вне зависимости от числа прямоугольников, будь их восемь, сто, тысяча или n, сумма их площадей будет рассчитываться одинаково. Значение площади S>s при разделении интервала [0, 1] на равных частей будет равно:


Следовательно, задача сводится к тому, чтобы найти значение этого выражения, когда стремится к бесконечности. Посмотрим, чему равен его числитель, представляющий собой сумму кубов натуральных чисел:

1>3 = 1

1>3 + 2>3 = 9

1>3 + 2>3 + 3>3 = 36

1>3 + 2>3 + 3>3 + 4>3 = 100

Числитель будет равен 1, 9, 36, 100, … — это квадраты чисел 1, 3, 6, 10, … Может показаться, что суммы кубов натуральных чисел равны квадратам некоторых других чисел. Но каких? Какой ряд образуют числа 1, 3, 6, 10, …? Заметим, что

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10.

Можно сформулировать теорему:

Сумма кубов первых


Еще от автора Микель Альберти
Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Рекомендуем почитать
Наука «Звёздных Войн»

«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.


Интернет животных. Новый диалог между человеком и природой

Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».


Иван Александрович Стебут, 1833–1923

Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.


Знание-сила, 1997 № 01 (835)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1998 № 03 (849)

Ежемесячный научно-популярный научно-художественный журнал для молодежи.


Знание-сила, 1998 № 02 (848)

Ежемесячный научно-популярный и научно-художественный журнал дли молодежи.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.