Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [12]

Шрифт
Интервал

Для обозначения цифр и в Китае, и в Японии (системы счисления в этих странах очень похожи) использовались девять идеограмм.



Для обозначения десятков, сотен, тысяч и следующих разрядов эти символы записывались рядом со следующими идеограммами:



При записи чисел использовались символы от 1 до 9 вместе с символами десятков, сотен и так далее. Например, число 10563 записывалось следующим образом:



что расшифровывается так:



Следует упомянуть, что в отличие от системы, используемой в большинстве европейских языков, в основе которой лежит тысяча (10>3), в китайской системе в основе кратных величин лежит 10>4. Следовательно, 132000 записывается как 13·(104) + 2000.

В виде идеограмм это число будет представлено так:



Число π в Китае

Китайцы разработали алгоритмы для вычисления числа π. Великий математик Лю Хуэй, живший около 300 года во времена царства Вэй, возникшего после распада империи Хань, первым создал метод вычисления числа π. Живший до него ученый и изобретатель Чжан Хэн (78—139), который создал прибор для определения землетрясений за 1700 лет до появления первого сейсмографа, получил приближенное значение π, равное 3,1724. Также использовались значения 3,162 (корень из 10) и 3,156. В III веке астроном Вань Фань, живший в царстве У, использовал последнее значение, равное дроби 142/45.

Первый метод, использованный Лю Хуэем для нахождения приближенного значения π, заключался в бисекции многоугольников. С помощью многоугольника с 96 сторонами он вычислил, что π лежит в интервале между 3,141024 и 3,142708. Он использовал приближенное значение, равное 157/50, так как считал значение 3,14 достаточно точным.



Китайские марки, посвященные ученым Лю Хуэю (слева) и Чжану Хэну (справа).


Лю Хуэй использовал шестиугольник со стороной L, вписанный в окружность. Далее число сторон многоугольника последовательно удваивалось. Иными словами, сначала рассматривался шестиугольник, затем 12-угольник, далее — 24-угольник (24 = 12·2), 48-угольник (48 = 24·2) и так далее. На каждом шаге Лю Хуэй вычислял площадь многоугольника с N сторонами и длину стороны многоугольника с числом сторон, равным 2N.

Будем обозначать за l длину стороны многоугольника с 2сторонами. Используем теорему Пифагора: для данного прямоугольного треугольника с гипотенузой h и двумя катетами длиной с>1 и с>2 выполняется равенство h>2 = с>1>2 + с>2>2.



Вычисление длины стороны l по известному значению L, где L — длина стороны шестиугольника, — длина стороны 12-угольника,

О — центр окружности, А и В — две вершины шестиугольника, С — новая вершина, Р — точка на стороне шестиугольника, равноудаленная от А и В. Радиус окружности равен r, расстояние от центра до Р равно R.


На рисунке обозначены центр окружности О и сторона шестиугольника (длиной L). Ее концы обозначены А и В. Точки ОАВ определяют треугольник. Далее вычисления выполняются следующим образом.

Шаг 0. Будем рассматривать многоугольник с N = 6 сторонами, длина его стороны L известна.

Шаг 1. Разделим сторону АВ на две равные части. Обозначим середину стороны АВ точкой Р.

Шаг 2. Вычислим длину отрезка ОР и обозначим ее длину за R. Для этого применим теорему Пифагора. Нам известно, что гипотенуза треугольника ОАР равна r, один из катетов равен L/2, длина другого, которую мы хотим вычислить, равна R. По теореме Пифагора г>2 = R>2 + (L/2)>2. Отсюда имеем R>2 = r>2 — (L/2)>2, следовательно


Шаг 3. Рассмотрим радиус окружности, который проходит через точку Р. Точка пересечения этого радиуса и окружности будет вершиной многоугольника с 2N сторонами. Обозначим эту точку С. Зная R, мы можем вычислить длину отрезка PC. Обозначим ее за р. Так как длина ОС равна r, длина PC равна


Шаг 4. Длину отрезка АС можно определить по теореме Пифагора. Как мы уже говорили, будем обозначать длину этого отрезка за l. В рассматриваемом прямоугольном треугольнике гипотенуза равна l, катеты — L/2 и р. Следовательно,


Шаг 5. Выразив l из последнего равенства, получим длину многоугольника с 2N сторонами:


Шаг 6. Площадь многоугольника с N сторонами можно вычислить на основе площади треугольника ОАВ. Площадь многоугольника будет в N раз больше площади этого треугольника. Площадь треугольника ОАВ, очевидно, равна половине произведения его основания на высоту. Длина основания АВ равна L, высота равна R (это значение мы уже вычислили). Следовательно, площадь многоугольника равна

N·площадь треугольника ОАВ = N·(L·R)/2.


Шаг 7. Далее нужно вернуться к шагу 2 и принять N = 2N, L = l. Чтобы определить значение π, нужно учесть, что площадь круга равна π·r>2. Следовательно, для r = 10 площадь круга равна π·100.

Если начать с r = 10 (в этом случае L = 10), с помощью вышеприведенного алгоритма мы получим значения площадей, представленные в таблице ниже. В этой таблице используется современная нотация, Лю Хуэй в своих расчетах применял дроби. Он заметил, что для данного многоугольника с 2N сторонами длиной l, построенного на основе многоугольника с сторонами длиной L, площадь круга (обозначим ее за С) удовлетворяет следующему неравенству:

площадь (2N) < С < площадь (2N) + избыток.

Избыток в этом неравенстве соответствует 2


Рекомендуем почитать
Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Родники здоровья

В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.