Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [14]

Шрифт
Интервал

Согласно одной из теорий, эта система счисления зародилась на границе с Китаем, так как в этом регионе применялся абак, и возникла необходимость в упрощенной записи расчетов, произведенных с помощью абака. Рождение позиционной системы счисления, возможно, связано с использованием точки для обозначения пустого разряда на абаке. Документальное подтверждение этому содержится в тексте VII века, найденном на северо-западе Индии в деревне Бакшали в 1881 году. Когда на смену этой точке пришел ноль, произошла революция. Ноль впервые упоминается вместе с остальными цифрами в 628 году, когда Брахмагупта в своей книге «Исправленный трактат Брахмы» определил его как результат вычитания числа из себя самого.

Как бы то ни было, в 870 году позиционная система счисления уже повсеместно применялась в Индии. Из Индии она попала в Багдад, откуда позднее распространилась по всем территориям, где прослеживалось влияние мусульманской культуры. В Китае позиционная система счисления с особыми символами стала использоваться начиная с эпохи династии Мин (1368–1644). В книгах по математике китайские символы были заменены арабскими цифрами лишь в начале XX века.

Древнейшая арабская книга, дошедшая до наших дней, где употребляются арабские цифры и позиционная система счисления, — это трактат «О началах индийской арифметики» Кушьяра ибн Лаббана. Эта работа выделяется не только тем, что в ней впервые использованы арабские цифры, но и оригинальностью содержания. В этой книге наряду с прочими цифрами употребляется ноль, называемый «сифр».

* * *

НОЛЬ И ЦИФРА

Слова «ноль» и «цифра» имеют очень похожее происхождение. Слово «цифра» происходит от арабского «сифр» — видоизмененного индийского «сунья». Исходное значение этого слова — «пустой». Фибоначчи в своей «Книге абака» (Liber Abaci), которая способствовала популяризации арабских цифр в Европе, упоминал слово zephyrum, которое на латыни и греческом означало «западный ветер», возможно, потому, что это слово было схоже с арабским «сафира», означавшее «быть пустым», которое, очевидно, было связано со словом «сифр» — «пустой».


КУШЬЯРИБН ЛАББАН

Персидский астроном и математик Кушьяр ибн Лаббан (971-1029) родился в Гиляне, к югу от Каспийского моря. Среди его трудов особое место занимает трактат «О началах индийской арифметики», однако он также был автором множества книг и собраний таблиц, которые передавались мусульманскими учеными из поколения в поколение. Он был учителем знаменитого математика ан-Насави. В своем трактате по арифметике он вводит арабские цифры и объясняет, как с их помощью выполняются основные действия: сложение, вычитание, деление на два, умножение, деление, вычисление квадратных и кубических корней.

* * *

До того времени многие арабские тексты представляли собой переводы с греческого, однако в X–XI веках эта тенденция радикально изменилась. На рубеже тысячелетий, когда жил Кушьяр ибн Лаббан, в мусульманском мире стали в изобилии появляться математические тексты, содержавшие новые важные результаты. По сути, именно мусульмане дополнили дробями позиционную систему счисления, которая до этого использовалась только для записи целых чисел.


Вычисление числа π в Индии

Индийцы также не устояли перед тайной числа π. Мадхава из Сангамаграма (1350–1425), основатель математической и астрономической школы в Керале, открыл, помимо прочего, разложение тригонометрических функций синуса и косинуса в бесконечный ряд и определил число π с помощью разложения в ряд для функции арктангенса.

Он выразил π следующим образом:

π/ 4 = 1–1/3 + 1/5 — 1/7 + … + (-1)>n/(2n+1) + …

Кроме того, он дал оценку ошибке при вычислении числа π через n членов этого ряда. Эти расчеты требовали обширных знаний в области рядов. Позднее разложение арктангенса в ряд было повторно открыто Джеймсом Грегори и использовано Готфридом Лейбницем для вычисления π. По этой причине этот ряд известен как ряд Лейбница и ряд Грегори — Лейбница. Лишь сравнительно недавно он получил название ряд Мадхавы — Лейбница в честь истинного первооткрывателя.

Разложение арктангенса в ряд выглядит следующим образом:

arctgxх — (х>3)/3 + (х>5)/5 — (х>7)/7 + …

Этот ряд крайне неэффективен для вычисления π. Причина в том, что для верного расчета 10 знаков я потребуется выполнить 10 миллиардов математических действий.

Глава 2

Средневековая Европа

В начале Средневековья образование в Европе держалось на трудах и авторитете поздних римских авторов, в частности Боэция. Образование в средневековых университетах следовало модели, введенной в V веке философом Марцианом Капеллой, автором трактата De Nuptiis Philologiae et Mercurio («О браке Филологии и Меркурия»), также известного как De septem disciplinis («О семи дисциплинах»), в котором он впервые разделил науки на тривиум и квадривиум.

Культурное наследие римлян ощущалось и в том, как производились вычисления, так как по-прежнему использовались римские цифры. Арабские цифры вводились медленно, этот процесс сопровождался горячими спорами и диспутами и длился в течение всего Средневековья. Тем не менее в Средние века также были совершены важные открытия, сыгравшие определяющую роль в развитии науки последующих эпох. Так, следует упомянуть логическую систему Раймунда Луллия, которая оказала большое влияние на работы Лейбница XVII века.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.