Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [13]

Шрифт
Интервал

треугольникам площадью р·(L/2)/2. Напомним, что рr — R. Получим значение избытка, равное 2·N·(р·(L/2))/2. Эти значения также приведены в таблице. Разница между площадью 96-угольника и 192-угольника очень мала, поэтому Лю Хуэй счел π = 3,14 достаточно точным.



Лю Хуэй заметил, что между последовательными избытками наблюдается определенное соотношение. В частности, он установил, что отношение между данным и следующим избытком примерно равно 1/4 = 0,25. Эти отношения представлены в таблице ниже. Используя это отношение, он вычислил приближенное значение площади 3072-угольника и с его помощью получил более точную оценку числа π.

В качестве примера рассмотрим, как Лю Хуэй определил площадь 384-угольника на основе последнего значения площади, вычисленного им напрямую, — площади 192-угольника. Площадь 192-угольника равна 314,10318, избыток площади этого многоугольника по отношению к предыдущему равен 0,16816857. Далее Лю Хуэй вычислил разницу площадей 192-угольника и 384-угольника. Она составила 0,16816857·(1/4) = 0,042042144. Следовательно, площадь 384-угольника равна:

314,10318 + 0,16816857·0,25 = 314,14523.

Реальный избыток площади равен 0,042062752, площадь многоугольника равна 314,14526.

С помощью этого способа Лю Хуэй вычислил площадь 3072-угольника и получил приближенное значение π, равное 3927/1250 = 3,14159.



В 480 году этот метод был пересмотрен математиком и астрономом Цзу Чунчжи (429–500), жившим во времена династии Ци. Использовав многоугольник с 12288 = 3·2>12 сторонами, он определил, что π заключено между следующими значениями: 3,1415926 < π < 3,1415927. Он представил результат так:

π ~= 355/113. В течение 900 лет эта оценка оставалась наиболее точной.


Индийская и арабская математика. Позиционная система счисления

История науки гласит, что индийская математика возникла в VII веке, когда в этой стране в качестве всеобщего языка уже использовался санскрит. Индия не была изолированной от Европы: индийцы поддерживали тесные контакты с греками, позднее с римлянами. Не следует забывать, что граница империи Александра Македонского проходила по долине реки Инд.

Хотя индийские ученые уделяли особое внимание астрономии, они занимались и математикой, которая играла важнейшую роль в развитии научной мысли. Любопытно, что индийцы не разделяли подход к науке, принятый в странах Востока, и не считали, что она обязательно должна иметь практическое применение. Стимулом развития индийской математики было получение знаний ради самих знаний. Несмотря на это, индийские ученые не слишком охотно приводили более или менее формальные доказательства своих методов и алгоритмов. Считается, что они обосновывали свои открытия, но найденные ими доказательства не сохранились.

Индийцы подробно изучили тригонометрию, особенно применительно к астрономическим расчетам и решениям неопределенных уравнений, а также алгебру и комбинаторику. По сути, понятие синуса и само слово «синус» впервые упоминаются в трактате по астрономии V века «Пайтамаха-сиддханта».

* * *

СИНУС

Как случилось, что для обозначения тригонометрической функции стало использоваться слово «синус»? Эта история берет начало в индийском трактате по астрономии под названием «Пайтамаха-сиддханта», в котором приводится таблица джайя-ардха — «измерение струн», использовавшаяся в астрономических расчетах. Этот термин вновь упоминается в труде «Ариабхатия» индийского математика Ариабхаты, который обозначал его как «джайя», или «джива». Арабы перевели это слово как «джиба», но так как в арабском отсутствуют отдельные буквы для обозначения гласных, то это слово записывалось как джб. При более позднем прочтении случайно или умышленно джб было прочитано как джаиб, что означало «грудь» или «пазуха», а переводчики на латынь использовали слово «синус», означавшее «пазуха», «складка на тоге», а также «залив». Этот термин используется не только в романских языках: даже английское слово sine имеет латинское происхождение.

* * *

Нет сомнений, что важнейшим вкладом индийских математиков в науку была созданная ими система счисления, которую мы называем арабской. В действительности арабы заимствовали ее у индийцев. Индийские цифры произошли от системы записи, которая использовалась во времена короля Ашоки (272–231 гг. до н. э.) для записи текстов на древнем языке пракрите. Тем не менее по пути на Запад индийские цифры неоднократно видоизменялись, поэтому современные цифры не похожи на придуманные индийцами. Современные цифры — одна из версий древних цифр на пракрите, которые попали в Северную Африку, претерпев некоторые изменения, и стали известны в Европе в Средние века.



Некоторые индийские цифры, описанные математиком Ариабхатой.

>(Источник: Джордж Ифра, «Всеобщая история чисел».)


Позиционная система счисления также имеет индийское происхождение. Изначально индийцы записывали числа с помощью символов, обозначавших цифры от 1 до 9; десятки от 10 до 90 обозначались другими цифрами. Числа, кратные 100, 1000 и так далее обозначались символами, соответствовавшими единицам, рядом с которыми записывались символы, обозначавшие 100, 1000 и далее. Позднее эта система записи упростилась, и впервые в истории возникла позиционная система счисления, в которой использовались только символы, соответствующие цифрам от 0 до 9. Когда именно произошло это изменение, точно неизвестно, но большинство источников указывает в качестве наиболее вероятной даты 600 год. Так, в сирийском тексте 662 года уже используются индийские цифры.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.