Том 12. Числа - основа гармонии. Музыка и математика - [2]

Шрифт
Интервал

до следующего до). Еще одно простейшее соотношение образуется, если прижать струну в точке, отстоящей от конца струны на треть ее длины. В численном виде это отношение записывается как 3:2 и соответствует интервалу в одну квинту (интервал от до до соль). Если прижать струну в точке, отстоящей от ее конца на четверть длины, что в численном виде записывается как 4:3, получится интервал, известный под названием кварта (интервал от до до фа).



* * *

ЗВУКИ ПЛАНЕТ

Представление о гармоничном космосе было частью классической культуры, пережившей второе рождение в эпоху Возрождения. Воплощением этого представления, которое изучали пифагорейцы, а также Аристотель и Платон, является гармония сфер. Ее суть заключается в том, что планеты при движении издают звуки, не слышимые человеком, и эти звуки являются созвучными, то есть гармоническими. Немецкий ученый Иоганн Кеплер (1571–1630) изучал религию, этику, диалектику, риторику, а также физику и астрономию. Он был сторонником гелиоцентрической теории и следовал заветам пифагорейцев и Платона. В начале XVII века движение планет считалось загадочным даже в научных кругах. Считалось, что объяснить его можно было лишь волей Бога.

Кеплер пролил свет на эту загадку, открыв законы движения планет, что стало одним из величайших научных открытий всех времен. Однако этим он не ограничился и включил в свою теорию классическое представление о гармонии сфер. Так, в своей книге Harmonices Mundi («Гармония мира») 1619 года Кеплер помимо астрономических законов изложил тезис о том, что каждая планета при вращении вокруг Солнца издает звук, зависящий от ее угловой скорости. Эта угловая скорость максимальна в перигелии (точке, ближайшей к Солнцу) и афелии (точке, наиболее удаленной от Солнца) эллиптической орбиты планеты. Кеплер сравнил звуки, соответствующие перигелию и афелию орбит всех планет, а также звуки, издаваемые соседними планетами. Затем он разработал музыкальный строй и аккорды, соответствующие этим звукам. Согласно его расчетам, мелодии Венеры и Земли в разных точках орбиты отличались на полутон или менее, а мелодия Меркурия изменялась более чем на одну октаву. Кеплер был религиозным человеком, поэтому придерживался мысли, что звучание планет очень редко оказывается гармоничным — возможно, лишь единожды, в момент божественного Сотворения.



Иллюстрация из книги Harmonices Mundi Иоганна Кеплера, на которой записаны предполагаемые звуки, издаваемые планетами.


ПИФАГОР САМОССКИЙ (ОК. 570 — ОК. 490 ГГ. ДО Н. Э.)

Пифагор родился на греческом острове Самос. Вдохновленный примером философа и математика Фалеса Милетского, он совершил длительное путешествие в Египет и Месопотамию, где изучал различные науки. Путешествие побудило его создать собственную школу, в которой сочетались различные естественно-научные, эстетические и философские дисциплины. Пифагор и его последователи изучали самые разнообразные области знания: акустику, музыку, арифметику, геометрию, астрономию. Слава Пифагора и его школы была столь велика, что ему приписывается авторство одной из фундаментальных теорем геометрии — теоремы Пифагора, которая была известна на Востоке несколькими веками ранее. В виде формулы теорема Пифагора записывается так:

а>2 + Ь>2 = с>2.

Это уравнение имеет бесконечно много целых решений, которые называются пифагоровыми тройками. Любые три числа, образующие пифагорову тройку, являются длинами сторон угольника — инструмента, используемого в сельском хозяйстве и различных ремеслах для построения прямых углов.

* * *

Таким образом, становится очевидно, что если длины струн удовлетворяют соотношению

(n + 1)/n,

то соответствующие им звуки будут гармоническими, приятными слуху. Пифагорейцы считали это доказательством прямой взаимосвязи между числами и гармонией, красотой.


Абсолютная высота звуков

Чтобы лучше понять важность открытий, совершенных пифагорейцами, следует различать абсолютную и относительную высоту звука. Каждая музыкальная нота задает высоту, в зависимости от которой звук называется низким или высоким. Высота звука определяется частотой колебаний соответствующей звуковой волны (мы поговорим об этом позже). Чем больше частота, тем выше звук. (В приложении I приводится подробное объяснение этого и других понятий музыки.)



Клавиши пианино, соответствующие низким звукам, расположены слева; клавиши, соответствующие высоким звукам, — справа.

* * *

ЛОПАЮЩЕЕСЯ СТЕКЛО И ТОНУЩИЕ МОСТЫ

Во многих художественных и мультипликационных фильмах можно увидеть, как певец берет очень высокую ноту и силой своего голоса разбивает стеклянный бокал. Это абсолютно реальное физическое явление. Твердые тела обладают собственной частотой колебаний, зависящей от материала, формы и других свойств. Источник звука испускает звуковые волны, вызывающие колебания окружающего воздуха. Если частота звуковой волны и частота собственных колебаний предмета совпадают, то амплитуда колебаний резко возрастает. Это физическое явление называется резонансом. Если при этом увеличивается акустическая энергия (иными словами, громкость звука), то амплитуда колебаний предмета становится еще больше. Струна не рвется от подобных колебаний благодаря своей гибкости. Другие тела, не столь упругие, не справляются с колебаниями и разрушаются. Именно из-за этого лопается стеклянный бокал. Известны и более серьезные случаи. 7 ноября 1940 года, спустя несколько месяцев после постройки, из-за колебаний, вызванных сильным ветром, обрушился висячий Такомский мост в американском штате Вашингтон. В авиации такое явление известно под названием флаттер.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.