Том 12. Числа - основа гармонии. Музыка и математика - [5]
В XI веке тосканский монах Гвидо д'Ареццо (ок. 995 — ок. 1050) разработал набор мнемонических правил для чтения нот. Возможно, самым известным из них является так называемая гвидонова рука. В этом методе ноты условно располагаются в алфавитном порядке на пальцах руки. Гвидо д'Ареццо также дал названия всем нотам. Он обозначил каждый звук первым слогом в каждой строке очень известной в то время молитвы Иоанну Крестителю:
Utqueant laxis,
resonare fibris,
Mlra gestorum,
famuli tuorum,
Solve polluti,
Labii reatum,
Sancte lohannes.
Позднее слог ut заменился на do. Так появились названия нот, которые используются и сейчас.
Рисунок «гвидоновой руки» из средневековой рукописи.
* * *
Если продолжить цепочку квинт, получится 12 звуков так называемого хроматического строя, составляющие квинтовый круг:
где знаки бемоль (
После того как мы получили 12 нот, упорядочив квинты, нетрудно вычислить частоты всех нот, лежащих в пределах одной октавы, путем сдвига на одну или несколько октав.
Подсчеты
Определим частоту каждой ноты с помощью цепочки квинт и сдвига на одну или несколько октав, то есть путем деления и умножения частоты на 2. Напомним, что отношение между частотами звуков всегда будет принимать значение между 1 (соотношение частоты одного и того же звука) и 2 (отношение частот нот до соседних октав).
Сначала определим относительную частоту ноты соль, которая отстоит на одну квинту от ноты до:
соль = 3/2
Затем определим частоту ноты ре, которая отстоит на одну квинту от соль (необходимо умножить частоту на 3/2), но потребуется сдвиг на одну октаву ниже (умножить частоту на 1/2):
Расстояние между до и ре называется целым тоном. Как и следовало ожидать, один тон равен двум полутонам.
Затем определим относительную частоту ноты ля, отстоящей на одну квинту от ре:
Нота ми отстоит на одну квинту от ля, но потребуется сдвиг на одну октаву ниже:
Последние ноты строя — си, отстоящая на одну квинту от ми, и фа, для получения которой необходим сдвиг на одну квинту ниже до с последующим смещением на одну октаву выше (потребуется умножить частоту на 2).
Приняв частоту до за 1, представим частоты всех нот в таблице:
Можно повторить эти же действия, чтобы определить частоты бемолей, соответствующих черным клавишам пианино.
Для этого нужно последовательно выполнять сдвиг на одну квинту ниже, начиная с ноты фа.
Пифагорейская комма
На одну квинту выше ноты си находится фа-диез, который должен совпадать с соль-бемоль. Но это не один и тот же звук: разница между фа-диез и соль-бемоль называется пифагорейской коммой. Аналогично, определив частоты фа-диез и ре-бемоль, мы увидим, что они отстоят друг от друга не на одну кварту, а на интервал, который отличается от квинты на одну пифагорейскую комму. Эта квинта, которая немного меньше настоящей, называется волчьей квинтой.
Построив квинтовый круг из 12 квинт, мы получим ноту, которая немного отличается от первоначальной и отстоит от нее на семь октав:
Это «немного» и есть пифагорейская комма. Ее значение (обозначим его ПК) можно вычислить, взяв за основу частоту f и сравнив цепочку из 12 квинт, начиная с f, с цепочкой из семи октав:
Отличие будет чуть больше 1 % октавы или, что равносильно, почти четверть полутона. Это отличие вызвано тем, что дробь, соответствующая квинте, несовместима с дробью, соответствующей октаве, что нетрудно показать. Для этого попробуем найти такие показатели степеней х и у, которые позволят связать эти две дроби:
Из последнего равенства следует, что нужно найти число, которое одновременно было бы степенью двух и трех. Однако, так как 2 и 3 являются простыми числами, это противоречит основной теореме арифметики, согласно которой любое положительное число можно однозначно представить в виде произведения простых множителей. Эту теорему, которую сформулировал Евклид, впервые полностью доказал Карл Фридрих Гаусс. Из нее следует, что квинта и октава пифагорейского строя никогда не совпадут, то есть не существует хроматического строя без пифагорейской коммы, что аналогично.
И человеческий голос, и безладовые инструменты допускают использование так называемого натурального строя, в котором ноты более согласованны, гармоничны. И голос, и струнные инструменты допускают незначительное изменение высоты издаваемого звука (корректировку строя) для наибольшего созвучия. Как вы увидели, пифагорейский строй создается на основе одной главной ноты, из которой получаются остальные ноты путем упорядочивания чистых квинт. Однако это вызывает некоторые математические затруднения: во-первых, несовместимость квинты и октавы ведет к появлению уже упомянутой волчьей квинты, во-вторых, существует несовместимость между квинтами и большими терциями.
В пифагорейском строе соотношение частот для терций получается с помощью цепочки из четырех квинт. Используя смещение на одну или несколько октав, получим, что соотношение частот равно 81:64. Однако существует и другой способ определения терции с помощью простого соотношения 5/4 или, что равносильно, 80:64. Это чистая терция.
Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.
Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники.
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.