Том 12. Числа - основа гармонии. Музыка и математика - [6]
Отсюда следует, что в пифагорейском строе, представляемом в виде последовательности квинт, терции не являются чистыми. На белых клавишах пианино расположены три терции: до — ми, фа — ля и соль — си. Можно сказать, что пифагорейский строй состоит из чистых квинт в ущерб чистоте терций.
Диатонический строй
В результате поисков «чистого» натурального строя появилась новая система отношения звуков — диатонический строй. В пифагорейском строе звуки выражаются в виде последовательности квинт. Диатонический строй имеет более сложную структуру.
Начиная с ноты до, соблюдая интервалы в одну квинту, откладываются две следующие основные ноты этого строя: фа и соль. Далее определяются ми, ля и си, отстоящие на чистую терцию от до, фа и соль соответственно.
Последняя нота, ре, отстоит от ноты соль ровно на одну квинту:
Интервалы диатонического строя «чище» и более постоянны. Это проявляется и в том, что соотношения частот звуков диатонического строя относительно просты. Сначала, начиная с ноты до, частота которой принимается равной 1, рассчитываются частоты нот фа и соль, отстоящих от до на одну чистую квинту. Частота фа принимается равной 4/3, частота соль — 3/2. Далее рассчитывается частота ноты ми, отстоящей от до на 5/4.
Аналогично определяется частота ноты ля, которую отделяет от фа одна терция:
Си отстоит на одну терцию от соль:
И наконец, рассчитывается частота ре, которую отделяет от ноты соль одна чистая квинта со сдвигом в одну октаву:
Последовательность, определяющая интервалы диатонического строя, подчиняется структуре тональной музыки. К тональной музыке принадлежит подавляющее большинство музыкальных композиций, созданных за последние несколько веков, начиная от периода барокко и классики и заканчивая рок- и поп-музыкой, а также западной фолк-музыкой.
В тональной музыке ноты выстроены в иерархию вокруг главной ноты, которая называется тоникой, или тональным центром. Каждая нота выполняет определенную музыкальную «функцию» в произведении. Из-за этого некоторые ступени тональности (особенно те, в построениях которых участвуют диезы и бемоли, которым соответствуют черные клавиши пианино) настраиваются в зависимости от контекста. Эти варианты приведены в следующей таблице.
Неизбежные сложности
Диатонический строй не миновали проблемы, неизбежно возникающие из-за несовместимости основных интервалов — октавы, квинты и терции. Почти для всех квинт соотношение частот звуков равно 3/2, но для квинты ре — ля оно немного меньше: 40/27. При дополнении диатонического строя диезами и бемолями все усложняется еще больше: неизбежно появляется волчья квинта.
Было предпринято множество попыток решить эту проблему с помощью различных темпераций — систем, в которых трудности при построении строя решаются в ущерб чистоте некоторых интервалов. Изменение чистоты каждого интервала определяет его «окраску».
Хотя построением различных строев и темперированием достигается относительно приемлемое равновесие, оно всегда основывается на тонике — ноте, от которой отсчитываются все остальные.
Если тоника остается неизменной, не возникает никаких трудностей. Однако при смене тонального центра изменяется весь строй.
Несмотря на то что абсолютная частота звуков, соответствующих всем нотам, остается неизменной, смена тонального центра нарушает равновесие, что приводит к смене «окраски».
Если музыкальное произведение, тональным центром которого является нота до, исполняется на инструменте, настроенном от до, то произведение звучит в точности так, как было задумано. Представим, что мы хотим исполнить это же произведение, но на тон выше, то есть с центром в ре, на том же инструменте, который по-прежнему настроен от до. Мелодия покажется нам не только более высокой, но и фальшивой.
Чтобы убедиться в этом, подробно рассмотрим интервал ре — ля. В диатоническом строе соотношение частот для этого интервала равно не 3/2, а 40/27. В новой интерпретации с тональным центром в ре интервал ре — ля займет место интервала до — соль, соотношение частот для которого равно 3/2.
Решение проблемы
Пока что нам не удалось найти музыкальный строй, не содержащий «ненастроенных» интервалов. Неизбежно возникает вопрос: можно ли создать такой строй, в котором все соотношения между нотами оставались бы неизменными вне зависимости от выбора тонального центра? Эту проблему нельзя решить посредством уравнивания интервалов, изменяя частоту нот так, чтобы увеличить или уменьшить определенные интервалы. Решение задачи заключается в том, что октава изначально должна делиться на 12 равных интервалов. Эти 12 интервалов должны разбиваться на 12 равных полутонов, которые в сумме составляют одну октаву.
Винченцо Галилей, отец Галилео Галилея, еще в XVI веке предложил разделить октаву на 12 равных полутонов. Соотношение частот этих полутонов равнялось 18/17. Упорядочиванием 12 таких интервалов получались малые октавы и квинты, соотношение частот для которых равнялось 1,9855… и 1,4919… соответственно.
Подойдем к решению этой задачи с чисто математической точки зрения. Обозначим за х отношение частот звуков для последовательных полутонов такое, что 12 интервалов по
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.