Teopeма Гёделя - [2]

Шрифт
Интервал

Таким образом, открытия Гёделя подорвали глубоко укоренившиеся представления и разрушили старые надежды, ожившие было в ходе более новых исследований по основаниям математики. Но работа Гёделя имеет не только отрицательное значение. Она обогатила исследования по основаниям математики совершенно новыми методами рассуждения, сравнимыми по своей природе и по своей плодотворности с алгебраическим методом, привлеченным для решения геометрических задач Рене Декартом. Открытия Гёделя существенно расширили проблематику логических и математических исследований. Кроме всего прочего, работа Гёделя обусловила существенную переоценку перспектив философии математики и философии науки в целом.

Детали доказательств теорем Гёделя из его знаменитой работы слишком трудны для того, чтобы понять их, не имея основательной математической подготовки. Но общую идею этих доказательств и значение следующих из них выводов вполне могут уяснить и читатели, обладающие совсем скромными познаниями в области математики и логики. Для этого читателю понадобятся разве лишь самые элементарные факты и понятия современной математики и формальной логики. Именно краткому знакомству с этим ограниченным запасом фактов и посвящены ближайшие четыре раздела нашего очерка.

2

Проблема непротиворечивости

Для XIX столетия характерна резкая интенсификация и расширение проблематики математических исследований. Были решены многие важные математические проблемы, не поддававшиеся усилиям лучшие мыслителей прошлых времен. Возникли совершенно новые математические дисциплины. В различных областях математики были выдвинуты новые основополагающие принципы, а применение старых принципов стало гораздо более плодотворным благодаря их пересмотру с учетом новой, более совершенной техники математического мышления. Вот простой пример. Еще греческие математики выдвинули три задачи из области элементарной геометрии: разделить на три части произвольный угол при помощи только циркуля и линейки; построить куб, объем которого был бы вдвое больше объема данного куба; построить квадрат, площадь которого равнялась бы площади данного круга, Более двух тысяч лет эти задачи не поддавались решению, пока, наконец, в XIX столетии не было строго доказано, что предписываемые в них построения вообще нельзя осуществить. Эти результаты, интересные и сами по себе, вызвали глубокий интерес к изучению природы понятия числа и строения числового континуума (поскольку выяснилось, что для решения упомянутых задач недостаточны числа, являющиеся корнями уравнений, хорошо изученных еще античными математиками). Плодом этих исследований явились строгие определения, на основе которые удалось построить теории отрицательных, комплексных и иррациональных чисел. Была построена на прочной логической основе и общая теория действительных чисел. Возникла совершенно новая ветвь математики — теория бесконечных множеств и так называемых трансфинитных («бесконечных») чисел.

Но, пожалуй, наиболее важным достижением XIX века явилось решение еще одной задачи, также восходящей еще к грекам, которая с тех пор оставалась без ответа. В числе аксиом, на базе которых строилась евклидова систематизация геометрии, имеется так называемая аксиома параллельности. В предложенной Евклидом формулировке эта аксиома равносильна утверждению (хотя и не совпадает с ним), что через точку, лежащую вне данной прямой, можно провести единственную прямую, параллельную данной прямой. Еще античным математикам эта аксиома отнюдь не казалась самоочевидной. Поэтому они пытались доказать ее в качестве следствия из остальных аксиом Евклида, которые, напротив, представлялись им совершенно очевидными. Можно ли, однако, действительно получить искомое доказательство для аксиомы параллельности? Поколения математиков безуспешно пытались ответить на этот вопрос. Но неоднократные неудачи попыток построения искомого доказательства не означали еще, что никто не преуспеет в этом деле больше, чем в важной для человечества проблеме изобретения безотказно и на все времена действующего средства от насморка. Такое положение вещей продолжалось до середины XIX столетия — до тех пор, пока в работах Гаусса, Бойаи, Лобачевского, Римана и других математиков не была доказана невозможность вывода аксиомы параллельности из остальных аксиом евклидовой геометрии. Этот результат имел громадное значение для понимания природы нашего мышления. В первую очередь он привлек внимание к тому поразительному факту, что можно доказать в качестве теоремы невозможность доказательства некоторых утверждений средствами данной системы.

Как мы увидим ниже, теорема Гёделя, которой посвящена наша книга, состоит в доказательстве невозможности доказательства некоторых арифметических утверждений средствами арифметики. Кроме того, разрешение старой проблемы об аксиоме параллельности неизбежно приводило к выводу, что аксиоматика Евклида отнюдь не является последним словом геометрии, — ведь можно, оказывается, построить новые геометрические системы, исходя из перечней аксиом, отличных от евклидовых и даже несовместимых с ними. Например, как хорошо известно, чрезвычайно интересные и плодотворные результаты были получены заменой евклидовой аксиомы параллельных допущением, согласно которому через точку, лежащую вне данной прямой, можно провести более чем одну прямую, параллельную этой прямой, или же, напротив, допущением, согласно которому параллельных прямых вообще не бывает. Традиционное убеждение, что аксиомы геометрии (или вообще аксиомы любой науки) могут быть приняты на основании их «самоочевидности», было, таким образом, совершенно подорвано. Более того, постепенно стало все более и более ясным, что подлинным предметом чистой математики является


Еще от автора Эрнест Нагель
Введение в логику и научный метод

На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.