Совместные испытания комплекса М-1 предписывалось начать на головных кораблях пр.61 и пр.63 в начале 1961 г.
В отличие от массово строившихся в 1960-е гг. сторожевых (в дальнейшем-больших противолодочных) кораблей пр.61, атомный ракетоносец пр.63 (главный конструктор — А.С. Савичев) так и не вышел из «бумажной» стадии разработки. На первоначальном этапе проектирования, в 1955 г., он рассматривался как относительно небольшой корабль водоизмещением 3200 т с мощным противокорабельным ударным оружием и скромным оборонительным вооружением на основе комплекса М-1. Но вскоре пр.63 преобразовался в солидный атомный крейсер, оснащенный, кроме противокорабельных ракет, также и ЗРК двух типов: большой дальности М-3 и маловысотным М-1. Аналогичную номенклатуру боевых средств предусматривали и для крейсера пр.64, представлявшего собой радикальную модернизацию крейсера пр.68бис. Однако вследствие переориентации кораблестроительных программ на атомный подводный флот крейсера пр.63 и пр.64, как и разрабатывавшийся по тому же постановлению от 17 августа 1956 г. комплекс М-3 с дальностью до 55 км так и не реализовались на практике.
Технический облик ракеты определился уже на стадии подготовки аванпроекта, выпущенного в декабре 1956 г. Для поражения низколетящих скоростных целей требовалось обеспечить большую среднюю скорость полета и высокую маневренность ЗУР. Для обстрела целей на ближней границе зоны поражения было необходимо предельно сократить дистанцию вывода ракеты на траекторию наведения, добиться высокой точности выдерживания ею направления на стартовом участке и максимально достижимых перегрузок при старте с предельно коротких направляющих. Для обеспечения устойчивости полета требовались стабилизаторы с размахом, превышающим габаритные ограничения.
В ОКБ-2 нашли простое и эффективное техническое решение, закрепив каждый из четырех прямоугольных стабилизаторов в шарнирном узле на корпусе стартового двигателя. До старта стабилизаторы примыкали длинной передней кромкой к двигателю и фиксировались кольцом из проволоки. В начале движения ЗУР по направляющей ПУ проволока перерезалась. Стабилизаторы за счет инерционных сил разворачивались, откидывались назад и фиксировались в новом положении, опираясь на обратный конус его хвостового отсека своей короткой стороной. Удар смягчался тормозным поршневым устройством и сминаемым штифтом. В процессе раскрытия стабилизаторов размах увеличивался почти в 1,5 раза, а центр приложения действующих на них аэродинамических сил сдвигался назад, чем обеспечивалась устойчивость ракеты.
Применение двухступенчатой схемы для ракеты относительно небольшой дальности определилось не только отсутствием в те годы достаточно легких и прочных конструкционных материалов, высокоэнергетических твердых топлив, но и тем, что у конструкторов еще не было опыта реализации в двигательной установке двухрежимных тяговых диаграмм, которые требовались для использования одноступенчатой схемы ракеты.
Маршевая ступень, выполненная по аэродинамической схеме «утка», оснащалась цельноповоротными пластинчатыми рулями для управления по тангажу и рысканию, а стабилизация по крену осуществлялась расположенными на крыльях элеронами. Схема «утка» способствовала достижению высокой маневренности при минимальных потерях на управление при полете на малых высотах.
В переднем коническом отсеке под радиопрозрачными элементами обтекателя размещался радиовзрыватель. В следующем отсеке находились две рулевые машинки аэродинамических рулей. Необходимую эффективность работы аэродинамических рулей в широком диапазоне высот и скоростей полета обеспечивали специальные пружинные компенсаторы.
Далее располагался отсек осколочно- фугасной боевой части, перед которой находился предохранительно-исполнительный механизм с тремя ступенями предохранения, обеспечивающий безопасность эксплуатации ракеты.
За боевой частью располагался отсек бортовой аппаратуры. В его верхней части был установлен центральный распределитель, под ним — преобразователь тока и турбогенератор. Питание рулевых машинок и турбогенератора осуществлялось сжатым воздухом, находившемся в шар-баллоне под давлением 300 кгс/см². Далее размещались автопилот, блок аппаратуры радиоуправления и рулевые машинки канала крена.
Стремление сосредоточить почти все приборы управления и элементы привода, включая рулевые машинки элеронов, в одной зоне перед двигателем привело к непривычному конструктивному решению — открытому размещению жестких тяг кинематики привода элеронов, протянутых вдоль корпуса маршевого двигателя.
Маршевый двигатель был выполнен по традиционной для первой половины XX века схеме — с разъемным стальным корпусом и вкладным зарядом из баллиститного топлива в виде моноблочной шашки с цилиндрическим каналом. Время работы маршевого двигателя составляло 16–18 с, тяга — до 1,58 т. Сверху конического переходного отсека устанавливался коробчатый блок с устройством запуска двигателя маршевой ступени.
К корпусу маршевой ступени крепились консоли крыла с элеронами, расположенными на верхней правой и нижней левой консолях крыла. Два короба бортовой кабельной сети проходили от переднего торца отсека боевой части до хвостового отсека маршевой ступени по левому и правому бортам ракеты.