Техника и вооружение 2013 11 - [8]

Шрифт
Интервал

Совместные испытания комплекса М-1 предписывалось начать на головных кораблях пр.61 и пр.63 в начале 1961 г.

В отличие от массово строившихся в 1960-е гг. сторожевых (в дальнейшем-больших противолодочных) кораблей пр.61, атомный ракетоносец пр.63 (главный конструктор — А.С. Савичев) так и не вышел из «бумажной» стадии разработки. На первоначальном этапе проектирования, в 1955 г., он рассматривался как относительно небольшой корабль водоизмещением 3200 т с мощным противокорабельным ударным оружием и скромным оборонительным вооружением на основе комплекса М-1. Но вскоре пр.63 преобразовался в солидный атомный крейсер, оснащенный, кроме противокорабельных ракет, также и ЗРК двух типов: большой дальности М-3 и маловысотным М-1. Аналогичную номенклатуру боевых средств предусматривали и для крейсера пр.64, представлявшего собой радикальную модернизацию крейсера пр.68бис. Однако вследствие переориентации кораблестроительных программ на атомный подводный флот крейсера пр.63 и пр.64, как и разрабатывавшийся по тому же постановлению от 17 августа 1956 г. комплекс М-3 с дальностью до 55 км так и не реализовались на практике.

Технический облик ракеты определился уже на стадии подготовки аванпроекта, выпущенного в декабре 1956 г. Для поражения низколетящих скоростных целей требовалось обеспечить большую среднюю скорость полета и высокую маневренность ЗУР. Для обстрела целей на ближней границе зоны поражения было необходимо предельно сократить дистанцию вывода ракеты на траекторию наведения, добиться высокой точности выдерживания ею направления на стартовом участке и максимально достижимых перегрузок при старте с предельно коротких направляющих. Для обеспечения устойчивости полета требовались стабилизаторы с размахом, превышающим габаритные ограничения.

В ОКБ-2 нашли простое и эффективное техническое решение, закрепив каждый из четырех прямоугольных стабилизаторов в шарнирном узле на корпусе стартового двигателя. До старта стабилизаторы примыкали длинной передней кромкой к двигателю и фиксировались кольцом из проволоки. В начале движения ЗУР по направляющей ПУ проволока перерезалась. Стабилизаторы за счет инерционных сил разворачивались, откидывались назад и фиксировались в новом положении, опираясь на обратный конус его хвостового отсека своей короткой стороной. Удар смягчался тормозным поршневым устройством и сминаемым штифтом. В процессе раскрытия стабилизаторов размах увеличивался почти в 1,5 раза, а центр приложения действующих на них аэродинамических сил сдвигался назад, чем обеспечивалась устойчивость ракеты.

Применение двухступенчатой схемы для ракеты относительно небольшой дальности определилось не только отсутствием в те годы достаточно легких и прочных конструкционных материалов, высокоэнергетических твердых топлив, но и тем, что у конструкторов еще не было опыта реализации в двигательной установке двухрежимных тяговых диаграмм, которые требовались для использования одноступенчатой схемы ракеты.

Маршевая ступень, выполненная по аэродинамической схеме «утка», оснащалась цельноповоротными пластинчатыми рулями для управления по тангажу и рысканию, а стабилизация по крену осуществлялась расположенными на крыльях элеронами. Схема «утка» способствовала достижению высокой маневренности при минимальных потерях на управление при полете на малых высотах.

В переднем коническом отсеке под радиопрозрачными элементами обтекателя размещался радиовзрыватель. В следующем отсеке находились две рулевые машинки аэродинамических рулей. Необходимую эффективность работы аэродинамических рулей в широком диапазоне высот и скоростей полета обеспечивали специальные пружинные компенсаторы.

Далее располагался отсек осколочно- фугасной боевой части, перед которой находился предохранительно-исполнительный механизм с тремя ступенями предохранения, обеспечивающий безопасность эксплуатации ракеты.

За боевой частью располагался отсек бортовой аппаратуры. В его верхней части был установлен центральный распределитель, под ним — преобразователь тока и турбогенератор. Питание рулевых машинок и турбогенератора осуществлялось сжатым воздухом, находившемся в шар-баллоне под давлением 300 кгс/см². Далее размещались автопилот, блок аппаратуры радиоуправления и рулевые машинки канала крена.

Стремление сосредоточить почти все приборы управления и элементы привода, включая рулевые машинки элеронов, в одной зоне перед двигателем привело к непривычному конструктивному решению — открытому размещению жестких тяг кинематики привода элеронов, протянутых вдоль корпуса маршевого двигателя.

Маршевый двигатель был выполнен по традиционной для первой половины XX века схеме — с разъемным стальным корпусом и вкладным зарядом из баллиститного топлива в виде моноблочной шашки с цилиндрическим каналом. Время работы маршевого двигателя составляло 16–18 с, тяга — до 1,58 т. Сверху конического переходного отсека устанавливался коробчатый блок с устройством запуска двигателя маршевой ступени.

К корпусу маршевой ступени крепились консоли крыла с элеронами, расположенными на верхней правой и нижней левой консолях крыла. Два короба бортовой кабельной сети проходили от переднего торца отсека боевой части до хвостового отсека маршевой ступени по левому и правому бортам ракеты.


Еще от автора Журнал «Техника и вооружение»
Техника и вооружение 2010 01

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 2012 12

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.




Техника и вооружение 2010 02

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 1998 05-06

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Рекомендуем почитать
Военная мощь Турецкой Республики

Предлагаемая читателю работа — одно из исследований военного потенциала Турецкой Республики и ее военной мощи. Данная книга представляет собой обобщенный материал на основе открытых источников информации, как отечественных, так и зарубежных, по турецким вооруженным силам, их состоянию и направлениям развития и военного строительства, а также специальным (разведывательным) службам страны, играющим важную роль в реализации внешнеполитических интересов страны; предназначена для исследователей, научных работников, аспирантов, адъюнктов, слушателей, студентов и курсантов, изучающих Турцию, турецкий язык и военно-политическую обстановку в регионе.


9-мм пистолет-пулемет с магазином большой емкости модели "Бизон– 2". Руководство по эксплуатации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Уникальная и парадоксальная военная техника

В этой книге впервые собраны воедино сведения о самых невероятных порождениях военно-технической мысли — летающих танках, кривоствольном оружии, подводных самолетах, огромных орудиях и многом другом.Читатель узнает об истории появления многих образцов такой необычной техники и причинах появления парадоксальных идей и проектов.


Танки БТ. Часть 1. Колесно-гусеничный танк БТ-2

Основной причиной покупки танка «Кристи» M.1940 послужило прежде всего предоставление фирмой технической помощи, передача всех производственных чертежей и технологического процесса производства танка. Дж. У.Кристи выразил также готовность прибыть в СССР сроком на два месяца для консультаций и организации производства. Кроме того, фирма предоставляла возможность нашему инженеру работать на заводе в Рауэй (США). Техническая помощь не распространялась лишь на двигатели «Либерти», гак как они под маркой «М-5» уже производились в СССР по лицензии.



Получи, фашист, гранату!

Советский Союз – родина первых в мире автоматических гранатометов. Жаль, что об этом мы узнали только через полвека после их изобретения.