Стратегические игры - [9]

Шрифт
Интервал

Вы должны осознавать, что ваш визави будет не менее тщательно анализировать информационное содержание ваших действий. Следовательно, вам необходимо делать то, что подаст достоверный сигнал о ваших истинных положительных качествах, а не о тех, которые можно имитировать. Это важно не только на первом свидании: раскрытие, сокрытие и сбор информации о глубинных намерениях другого человека актуальны на протяжении всего периода поддержания отношений. Вот история, которая это иллюстрирует.

В Нью-Йорке жили мужчина и женщина, имевшие отдельные квартиры с регулируемой арендной платой[6]. Отношения пары достигли апогея, и они решили жить вместе. Женщина предложила мужчине отказаться от второй квартиры, но он, будучи экономистом, объяснил ей основополагающий принцип: всегда лучше иметь больше вариантов выбора. Возможно, вероятность их разрыва минимальна, но, учитывая даже небольшой риск, было бы разумно сохранить вторую квартиру с низкой арендной платой. Женщина восприняла это крайне негативно и немедленно разорвала с партнером отношения!

Экономисты, услышав эту историю, говорят, что она лишь подтверждает принцип целесообразности более широкого выбора. Однако стратегическое мышление предлагает несколько иное, более убедительное объяснение. Женщина не была уверена в серьезности намерений мужчины, и ее предложение стало блестящим стратегическим способом узнать правду. Слова ничего не стоят: кто угодно может сказать «Я тебя люблю». Если бы мужчина подкрепил слова делом и согласился разорвать договор аренды, это было бы конкретным свидетельством его любви, но его отказ стал веским доказательством обратного, а значит, женщина поступила правильно, разорвав с ним отношения.

Все эти примеры, рассчитанные на ваш непосредственный опыт, относятся к очень важному классу игр, в которых основной стратегический вопрос — манипулирование информацией. Стратегии, позволяющие передавать о себе выигрышную информацию, называются сигналами; а стратегии, которые побуждают людей действовать так, чтобы они достоверно раскрывали личную информацию, будь то хорошую или плохую, называются инструментами скрининга. Следовательно, предложение женщины отказаться от одной из квартир и явилось инструментом, поставившим мужчину перед выбром: либо отказаться от квартиры, либо продемонстрировать отсутствие серьезных намерений. В главе 8 и главе 13 мы изучим игры в информацию, а также методы сигнализирования и скрининга.

3. Наша стратегия изучения стратегических игр

Мы выбрали несколько примеров, касающихся вашего опыта как стратегов-любителей, полученного в реальной жизни, чтобы проиллюстрировать базовые концепции стратегического мышления и стратегических игр. Мы могли бы продолжить, предложив вам десятки аналогичных историй в расчете на то, что, столкнувшись с реальной стратегической ситуацией, вы проведете параллель с одной из них и сможете разработать подходящую стратегию. Подхода, сводящегося к анализу примеров из практики, придерживаются в большинстве бизнес-школ. Он представляет собой конкретный запоминающийся инструмент изучения базовых концепций. Тем не менее каждая новая стратегическая ситуация состоит из уникальной комбинации стольких переменных, что понадобилось бы слишком много примеров, чтобы охватить их все.

Альтернативный подход базируется на общих принципах, лежащих в основе примеров из практики, а значит, конструирует теорию стратегического действия, то есть формальную теорию игр. Он рассчитан на то, что в случае возникновения фактической стратегической ситуации вы сможете понять, какой принцип или принципы к ней применить. По этому пути пошли такие академические дисциплины, как экономика и политология. Недостаток данного подхода состоит в том, что теория подается в крайне абстрактном и математическом виде, без достаточного количества примеров из практики. Это делает ее трудной для восприятия большинством начинающих, чтобы затем связать с реальностью.

Однако знание общей теории обладает огромным компенсирующим преимуществом, обеспечивая более глубокое понимание игр и того, почему они имеют тот или иной исход. Это поможет вам играть лучше, чем если бы вы просто прочитали еще больше примеров и узнали рецепт, как играть в некоторые конкретные игры. Понимание того, почему нужно играть так или иначе, позволит вам тщательно анализировать непредвиденные ситуации, в которых сторонник использования готовых рецептов просто растерялся бы. Чемпион мира по игре в шашки Том Уисуэлл сформулировал эту мысль так: «Игрок, который знает, как играть, обычно играет вничью. Игрок, который знает, почему так надо играть, как правило, выходит победителем»[7]. Этот принцип не стоит воспринимать буквально для всех без исключения игр — некоторые игры могут ставить одного из игроков в безвыходное положение независимо от его осведомленности, — однако он содержит зачаток важной общей истины: знание причин дает вам важное преимущество, которого у вас не было бы, имей вы только практические навыки. Например, знание причин игры поможет вам предвидеть безнадежную ситуацию и вообще не ввязываться в такую игру.


Еще от автора Авинаш Диксит
Теория игр. Искусство стратегического мышления в бизнесе и жизни

Теория игр – это строгое стратегическое мышление. Это искусство предугадывать следующий ход соперника вкупе со знанием того, что он занимается тем же самым. Основная часть теории противоречит обычной житейской мудрости и здравому смыслу, поэтому ее изучение может сформировать новый взгляд на устройство мира и взаимодействие людей. На примерах из кино, спорта, политики, истории авторы показывают, как почти все компании и люди вовлечены во взаимодействия, описываемые теорией игр. Знание этого предмета сделает вас более успешным в бизнесе и жизни.


Рекомендуем почитать
Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Наша математическая вселенная

Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.