Стратегические игры - [11]

Шрифт
Интервал

В главах 3−7 мы расскажем о каждой из этих категорий, или параметров, более детально, а в главах 8−17 покажем, как использовать данный анализ в нескольких контекстах. Безусловно, большинство реальных примеров практического применения стратегических игр представляют собой не чистый тип, а скорее, сочетание разных типов. Более того, каждый пример практического применения связан с двумя или более категориями. Следовательно, знания, полученные в процессе изучения чистых типов, предстоит должным образом комбинировать. Мы покажем, как это делать, в контексте наших примеров из практики.

В данной главе сформулированы основные концепции и термины (такие как стратегии, выигрыши и равновесие), используемые в ходе анализа, а также сжато описаны методы решения. Кроме того, мы предлагаем краткое обсуждение примеров применения теории игр и общий обзор структуры оставшейся части книги.

1. Решения и игры

Когда человек (команда, компания или правительство) решает, как строить взаимоотношения с другими людьми (командами, компаниями или правительствами), это обязательно предполагает взаимовлияние действий: то есть то, что делает одна сторона, неизбежно сказывается на результате, полученном другой стороной. Когда Джорджа Пикетта[8] (возглавлявшего одну из атак в битве при Геттисберге) попросили объяснить поражение Конфедерации в ходе Гражданской войны, он ответил: «Думаю, тут не обошлось без янки»[9].

Однако для того, чтобы взаимодействие получило статус стратегической игры, необходимо нечто большее, а именно взаимная осведомленность участников игры о наличии такого перекрестного эффекта. То, что делает другой человек, отражается на вас; зная об этом, вы сможете отреагировать на его действия или принять превентивные меры, чтобы предотвратить его негативное влияние или усилить положительное или даже предпринять такие упреждающие действия, которые бы изменили его будущую реакцию в вашу пользу. Когда вы знаете, что другой человек тоже в курсе, что ваши действия повлияют на него, вы понимаете, что он предпримет аналогичные шаги, и т. д. Именно эта обоюдная осведомленность о взаимовлиянии действий, а также меры, предпринятые вследствие такого знания, и есть самые интересные аспекты стратегии.

Мы проводим это различие, обозначая термином стратегические игры (или иногда просто игры, поскольку нас не интересуют игры других типов: например, игры, которые рассчитаны исключительно на везение или мастерство) взаимодействие между взаимно осведомленными игроками и термином решения ситуации, в которых каждый человек волен делать выбор, не заботясь о реакции или ответных действиях окружающих. Если Роберт Ли (который отдал Пикетту приказ провести обреченную на поражение атаку) полагал, что его артиллерийский обстрел ослабит янки до такой степени, что те утратят способность сопротивляться, то его приказ атаковать был решением; если же он знал о том, что это заведомо провальный ход и янки готовы к атаке, тогда его выбор — часть кровопролитной игры. Простое правило гласит: если нет двух или более игроков, реагирующих на действия (или, по мнению каждого игрока, возможные действия) других, тогда это не игра.

Стратегические игры особенно ярко проявляются в случаях прямого противостояния двух участников игры. Например: гонка вооружений между Соединенными Штатами Америки и Советским Союзом в 1950–1980-х годах, переговоры о повышении заработной платы между General Motors и United Auto Workers (Профсоюзом рабочих автомобильной промышленности) или матч Суперкубка между двумя «пиратами» — командами Tampa Bay Buccaneers и Oakland Raiders. Напротив, взаимодействие между большим количеством участников кажется менее подверженным воздействию проблем, обусловленных обоюдной осведомленностью. Поскольку объем продукции, выращенной одним фермером, — лишь незначительная часть объема продукции всей страны или мира, решение этого фермера вырастить больше или меньше кукурузы практически никак не сказывается на рыночной цене, поэтому на первый взгляд нет оснований рассматривать сельское хозяйство как стратегическую игру. Данная точка зрения действительно преобладала в экономике на протяжении многих лет. Немногочисленные случаи противостояния между крупными компаниями (как на автомобильном рынке США, на котором некогда доминировали GM, Ford и Chrysler) вполне обоснованно рассматривались как стратегические игры, но при этом предполагалось, что большинство других случаев экономического взаимодействия регулируются такими обезличенными факторами, как спрос и предложение.

В действительности у теории игр гораздо более широкая область действий. Многие ситуации, которые начинаются как обезличенный рынок с тысячами участников, превращаются в стратегическое взаимодействие между двумя или несколькими участниками. Это происходит по одной из двух крупных категорий причин: взаимные обязательства или личная информация.

Рассмотрим сначала обязательства. Когда вы планируете строить дом, вы выбираете одного из нескольких десятков подрядчиков в вашем регионе; точно так же подрядчик выбирает одного из нескольких потенциальных клиентов. На первый взгляд может показаться, что это обезличенный рынок. Однако после того, как каждая сторона делает свой выбор, клиент выплачивает первоначальный взнос, а подрядчик покупает стройматериалы, оба становятся связанными друг с другом независимо от рынка, и отношения между ними приобретают


Еще от автора Авинаш Диксит
Теория игр. Искусство стратегического мышления в бизнесе и жизни

Теория игр – это строгое стратегическое мышление. Это искусство предугадывать следующий ход соперника вкупе со знанием того, что он занимается тем же самым. Основная часть теории противоречит обычной житейской мудрости и здравому смыслу, поэтому ее изучение может сформировать новый взгляд на устройство мира и взаимодействие людей. На примерах из кино, спорта, политики, истории авторы показывают, как почти все компании и люди вовлечены во взаимодействия, описываемые теорией игр. Знание этого предмета сделает вас более успешным в бизнесе и жизни.


Рекомендуем почитать
Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.