Стратегические игры - [8]

Шрифт
Интервал

Такую стратегическую игру можно рассматривать с двух точек зрения. Согласно первой, перед каждым соседом по комнате стоит простой бинарный выбор — идти за покупками или нет. Вне сомнения, лучший вариант для вас — чтобы сосед пошел в магазин, а вы остались дома, а худший — обратный порядок действий. Если вы оба сделаете покупки без ведома друг друга, скажем, по пути домой из университета или с работы, произойдет ненужное дублирование и даже, возможно, порча некоторых продуктов; если никто не совершит покупок, могут возникнуть серьезные неудобства, а то и катастрофа местного масштаба, если вдруг в самый неподходящий момент закончится туалетная бумага.

Эта ситуация аналогична игре в труса, в которую имели обыкновение играть американские подростки. Два подростка мчались навстречу друг другу на автомобилях. Тот, кто сворачивал в сторону, чтобы избежать столкновения, считался проигравшим (трусом), а тот, кто продолжал ехать прямо, побеждал. Мы подробно проанализируем эту игру в главе 4, а также главе 7, главе 11 и главе 12.

Согласно второй, более интересной и динамичной точке зрения, та же ситуация рассматривается как «война на истощение», в которой каждый сосед по комнате пытается переждать остальных, рассчитывая на то, что у кого-то терпение лопнет раньше. Тем временем риск того, что в квартире закончится запас чего-то важного, что приведет к серьезным неудобствам или крупной ссоре, повышается. Каждый игрок допускает такое повышение до своей точки терпимости; проигрывает самый невыдержанный. Каждый пытается понять, насколько близко к грани катастрофы позволят ситуации развиваться другие участники игры. Отсюда и термин «балансирование на грани», которым обозначаются подобные стратегия и игра. Это динамическая версия игры в труса, открывающая более широкие и интересные возможности.

Один из нас (Диксит) имел удовольствие наблюдать блестящий пример балансирования на грани во время званого ужина одним субботним вечером. Когда перед ужином гости собрались в гостиной, в дверях появилась пятнадцатилетняя дочь хозяина дома и сказала: «Папа, пока». Отец спросил: «Куда ты идешь?» — и дочь ответила: «Прогуляться». После короткой, буквально в несколько секунд, паузы хозяин дома произнес: «Хорошо, пока».

Ваш внутренний стратегический наблюдатель погрузился в размышления о том, могла ли эта ситуация сложиться иначе. Хозяин дома мог бы спросить: «С кем?», а дочка ответить: «С друзьями». Отец мог бы не разрешить прогулку, если бы дочь не объяснила, куда и с кем пойдет. На более позднем этапе диалога кто-нибудь из них сдался бы или, наоборот, все это привело бы к крупной ссоре.

Игра была рискованной для обоих. Дочь могла быть наказана или унижена в присутствии посторонних, а возникший инцидент испортил бы отцу званый ужин. Каждому пришлось оценивать свои дальнейшие шаги без полной уверенности в том, уступит ли другой и когда или же последует неприятная сцена. Риск крупной ссоры повысился бы, если бы отец настаивал на подробном отчете дочери, а она бы все упорнее отказывалась это делать.

В этом отношении игра между отцом и дочерью напоминала прения между профсоюзом и руководством компании о сферах влияния. Ни одна сторона не может быть полностью уверена в намерениях другой стороны, поэтому каждая изучает их посредством последовательности небольших дополнительных шагов, каждый из которых повышает риск обоюдной катастрофы. Дочь в нашей истории исследовала ранее не опробованные границы свободы, а отец анализировал ранее не опробованные (а может, и непонятные для него самого) границы своего влияния.

Это был пример балансирования на грани — игры, главным образом сводящейся к повышению обоюдного риска. Такие игры обычно заканчиваются одним из двух сценариев. В первом один из игроков достигает своего предела терпимости к риску и уступает. (Отец в нашей истории сдался быстро, на первом же этапе. Дочери других, более строгих отцов, возможно, даже не начинали бы эту игру.) Во втором, прежде чем кто-либо из участников конфликта уступит, риск повышается до критического уровня и начинается крупная ссора (или забастовка, или война). Конфликт в семье хозяина дома разрешился «благополучно»: хотя отец признал поражение, а дочь победила, ссора была бы гораздо хуже для обоих.

Мы проанализируем стратегию балансирования на грани более подробно в главе 9, а в главе 14 рассмотрим самый важный пример данной стратегии — Карибский (Кубинский) ракетный кризис 1962 года.

Е. Игра в свидания

Когда вы собираетесь к кому-то на свидание, вы хотите предстать перед этим человеком с лучшей стороны и скрыть недостатки. Безусловно, вы не можете скрывать их бесконечно, особенно если ваши отношения будут развиваться, но вы полны решимости стать лучше или надеетесь, что к тому времени партнер примет вас таким, какой вы есть. Вы также знаете, что отношения будут бесперспективны, если вы не произведете хорошего первого впечатления: увы, второго шанса у вас уже не будет.

Разумеется, вы хотите узнать о человеке, с которым у вас свидание, все (и хорошее, и плохое). Но вам также известно, что если ваш партнер владеет техникой знакомства не хуже вас, то он (или она) тоже попытается показать свою лучшую сторону и скрыть худшую. Вы проанализируете ситуацию более тщательно и попробуете понять, какие признаки хороших качеств настоящие, а какие без труда можно имитировать, чтобы произвести благоприятное впечатление. Даже самый неряшливый человек может появиться на важной встрече в опрятной одежде, но обходительность и хорошие манеры, которые проявляются во множестве мелких деталей, трудно изображать весь вечер, если вы к ним не приучены. Цветы — относительно дешевый подарок; более дорогие подарки могут иметь определенную ценность, но не по своей сути, а как достоверные свидетельства того, чем этот человек готов ради вас пожертвовать. А «валюта», в которой исчисляется ценность такого подарка, может иметь разную значимость в зависимости от контекста: подаренный миллионером бриллиант может стоить в данном случае меньше, чем потраченное человеком на общение с вами время или какое-то дело, выполненное по вашей просьбе.


Еще от автора Авинаш Диксит
Теория игр. Искусство стратегического мышления в бизнесе и жизни

Теория игр – это строгое стратегическое мышление. Это искусство предугадывать следующий ход соперника вкупе со знанием того, что он занимается тем же самым. Основная часть теории противоречит обычной житейской мудрости и здравому смыслу, поэтому ее изучение может сформировать новый взгляд на устройство мира и взаимодействие людей. На примерах из кино, спорта, политики, истории авторы показывают, как почти все компании и люди вовлечены во взаимодействия, описываемые теорией игр. Знание этого предмета сделает вас более успешным в бизнесе и жизни.


Рекомендуем почитать
Вероятности и неприятности. Математика повседневной жизни

Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости», — несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе и т. п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?», — и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Как постепенно дошли люди до настоящей арифметики

В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкойВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ.