Справочное руководство по C++ - [42]
Эллипсис в списке формальных параметров (§R.8.2.5) может сопоставляться с фактическим параметром любого типа.
Для данного фактического параметра допускается только такая последовательность преобразований типа, которая содержит не более одного пользовательского преобразования. Ее нельзя сократить, исключив одно или несколько преобразований, до последовательности, которая также приводит к типу, сопоставимому с типом рассматриваемого формального параметра. Такая последовательность преобразований называется наиболее соответствующей последовательностью.
Например, последовательность int-›float-›double задает преобразование int в double, но ее нельзя назвать наиболее соответствующей последовательностью, поскольку в ней содержится более короткая последовательность int-›double.
Кроме описанных ниже случаев, следующие тривиальные преобразования типа T не влияют на свойство последовательности быть наиболее соответствующей:
исходный тип | тип результата |
---|---|
T | T& |
T& | T |
T[] | T* |
T(параметры) | T(*)(параметры) |
T | const T |
T | volatile T |
T* | const T* |
T* | volatile T* |
Последовательности тривиальных преобразований, которые отличаются только порядком преобразований, считаются совпадающими. Отметим, что для функций с формальным параметром типа T, const T, volatile T, T&, const T& и volatile T& допустим фактический параметр из одно и того же множества значений. При необходимости для разделения последовательностей преобразований используются спецификации const и volatile, как описано в правиле [1] ниже.
Для формального параметра типа T& требуется временная переменная в случаях, если: фактический параметр не является адресом, или имеет тип, отличный от T, в том числе тип volatile. Наличие такой переменной не влияет на сопоставление параметров. Однако, оно может повлиять на допустимость результата сопоставления, т.к. временную переменную нельзя использовать для инициализации ссылок, не являющихся const (§R.8.4.3).
Последовательности преобразований рассматриваются согласно следующим правилам:
[1] Точное сопоставление. Последовательности из нуля или более тривиальных преобразований предпочтительнее любых других последовательностей. Из более сложных последовательностей наиболее предпочтительны те, в которых нет преобразований T* в const T*, T* в volatile T*, T& в const T& или T& в volatile T&.
[2] Сопоставление со стандартными преобразованиями основных типов. Из последовательностей, не относящихся к [1], наиболее предпочтительны те, которые содержат только стандартные целочисленные преобразования (§R.4.1), преобразования float в double и тривиальные преобразования.
[3] Сопоставление с любыми стандартными преобразованиями. Из последовательностей, не относящихся к [2], наиболее предпочтительны те, которые содержат только любые стандартные преобразования (§R.4.1, §R.4.2, §R.4.3, §R.4.4, §R.4.5, §R.4.6, §R.4.7, §R.4.8) и тривиальные преобразования. Для этих последовательностей если A является прямым или косвенным общим базовым для класса B, то преобразование B* в A* предпочтительнее преобразования B* в void* или const void*. Далее, если B является прямым или косвенным базовым классом для C, то предпочтительнее преобразование C* в B*, чем C* в A*, и предпочтительнее преобразование C& в B&, чем C& в A&. Иерархия классов выступает здесь критерий отбора преобразований указателя в член (§R.4.8).
[4] Сопоставление с пользовательскими преобразованиями. Из последовательностей, не относящихся к [3], наиболее предпочтительны те, которые содержат только пользовательские (§R.12.3), стандартные (§R.4) и тривиальные преобразования.
[5] Сопоставление с эллипсисом. Последовательности, которые требуют сопоставления с эллипсисом, считаются наименее предпочтительными.
Пользовательские преобразования выбирают, исходя из типа переменной, которая инициализируется или которой присваивается значение.
>class Y {
> //…
>public:
> operator int();
> operator double();
>};
>void f(Y y)
>{
> int i = y; // вызов Y::operator int()
> double d;
> d = y; // вызов Y::operator double()
> float f = y; // ошибка: неоднозначность
>}
Стандартные преобразования (§R.4) могут применяться к параметру, как до пользовательского преобразования, так и после него.
>struct S { S(long); operator int();} ;
>void f(long), f(char*);
>void g(S), g(char*);
>void h(const S&), h(char*);
>void k(S& a)
>{
> f(a); // f(long(a.operator int()))
> g(1); // g(S(long(1)))
> h(1); // h(S(long(1)))
>}
Если для параметра требуется пользовательское преобразование, то не учитываются никакие стандартные преобразования, которые могут затрагивать этот параметр, например:
>class x {
>public:
> x(int);
>};
>class y {
>public:
> y(long);
>};
>void f(x);
>void f(y);
>void g()
>{
> f(1); // неоднозначность
>}
Здесь вызов f(1) неоднозначен. Несмотря на то, что для вызова f(y(long(1))) требуется на одно стандартное преобразование больше, чем для вызова f(x(1)), второй вызов не является предпочтительным.
Преобразования с помощью конструктора (§R.12.1) и с помощью функции преобразования (§R.12.3.2) равноправны.
>struct X {
> operator int();
>};
>struct Y {
> Y(X);
>};
>Y operator+(Y,Y);
>void f(X a, X b)
>{
> a+b; // ошибка, неоднозначность:
> // operator+(Y(a), Y(b)) или
С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных.
Разработчику часто требуется много сторонних инструментов, чтобы создавать и поддерживать проект. Система Git — один из таких инструментов и используется для контроля промежуточных версий вашего приложения, позволяя вам исправлять ошибки, откатывать к старой версии, разрабатывать проект в команде и сливать его потом. В книге вы узнаете об основах работы с Git: установка, ключевые команды, gitHub и многое другое.В книге рассматриваются следующие темы:основы Git;ветвление в Git;Git на сервере;распределённый Git;GitHub;инструменты Git;настройка Git;Git и другие системы контроля версий.
Рассмотрено все необходимое для разработки, компиляции, отладки и запуска приложений Java. Изложены практические приемы использования как традиционных, так и новейших конструкций объектно-ориентированного языка Java, графической библиотеки классов Swing, расширенной библиотеки Java 2D, работа со звуком, печать, способы русификации программ. Приведено полное описание нововведений Java SE 7: двоичная запись чисел, строковые варианты разветвлений, "ромбовидный оператор", NIO2, новые средства многопоточности и др.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.