Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [4]

Шрифт
Интервал

π = 22/7 = 3,142…,

что соответствует π с хорошей точностью.

В Вавилонии в этом смысле прогресс шел медленнее: на глиняной табличке из древнего города Суса, датированной примерно 200 г. до н. э., приведено значение π, равное 25/8 = 3,125.

В ведических текстах Древней Индии, относящихся к IX веку до н. э., приводятся различные значения π, рассчитанные для разных практических задач. Наиболее точное значение основано на астрономических вычислениях и содержится в «Шата-патха-брахманы»: π = 339/108 = 3,1388…


История числа π: Архимед

Перенесемся в Древнюю Грецию — родину одного из величайших умов человечества, Архимеда из Сиракуз. Возможно, еще в V веке до н. э. вычислением числа π занимался Анаксагор, но письменных свидетельств этого не сохранилось. Мы не будем приводить здесь выкладки Архимеда о расчете приближенного значения π, так как они сложны и объемны. Оставим их историкам науки. Попробуем объяснить метод Архимеда простым и доступным образом, используя современное понятие предела. Представим себе многоугольник, вписанный в окружность, подобный тому, что изображен на рисунке.



Заметим, что он состоит из треугольников с основаниями Ь и высотой h. Общая площадь n треугольников, примерно равная площади круга, равна

S>n = п площадь треугольника.

Таким образом,



Перейдя к пределу и увеличивая число треугольников так, что n —>

, получим



так как



и придем к следующему заключению:



Архимеду было неизвестно современное определение предела, и он использовал так называемый метод исчерпывания, созданный Евдоксом Книдским (400–347 до н. э.). Для этого Архимед использовал вписанные и описанные многоугольники, как показано на рисунке. Окружность заключалась между вписанным и описанным многоугольниками, соответственно, была ограничена и площадь окружности. С ростом числа углов многоугольников оценка площади окружности становилась все точнее.



Схема, на которой изображен так называемый переход к пределу, поможет понять, почему площадь круга равняется πr>2:



Мы видим, как формируется криволинейный параллелограмм и его стороны постепенно распрямляются. Вспомним, что площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне. Высота постепенно приближается к значению радиуса r, а основание — к половине длины окружности. Площадь параллелограмма стремится к

r∙(l/2) = r∙(2πr/2) = rπr = πr>2

Архимед вычислил верхнюю и нижнюю оценку значения π:

223/π = 3,140845… < π < 22/7 = 3,142857…

с отменной точностью.


АРХИМЕД ИЗ СИРАКУЗ (ОК. 287 — ОК. 212 ГГ. ДО Н.Э.)

Греческий инженер, физик, астроном и математик Архимед считается важнейшим ученым античности и одним из величайших умов человечества. В области математики фигурами сопоставимой величины можно назвать лишь Ньютона, Гаусса и фон Неймана. Его вклад в науку неоценим. Он создал червячную передачу, параболические зеркала, многочисленные системы блоков (полиспасты) и многие другие механизмы. Наверное, самым значимым стал открытый им закон гидростатики, известный нам как закон Архимеда. Образ Архимеда, который выскакивает из ванной и кричит «Эврика!» («Нашел!»), стал классическим образом первооткрывателя. Его открытия в математике бессчетны: помимо вычисления числа к он определил периметр, площадь, объем и центр тяжести для множества геометрических фигур и тел (в частности, для сферы, цилиндра, параболы, спирали и пр.), изучал диофантовы уравнения, построил счисление, позволяющее записывать и называть весьма большие числа, и так далее.

Он умер во время осады Сиракуз, при обороне которых использовались придуманные им механизмы. Согласно Плутарху, Архимед рассматривал чертеж на песке, когда к нему подошел римский солдат. Архимед настойчиво просил его подождать, сказав: «Не трогай мои чертежи», после чего разгневанный солдат зарубил Архимеда мечом. Плутарх пишет, что смерть Архимеда возмутила римского генерала, который считал ученого очень ценной добычей.

На могиле великого геометра изображен шар, вписанный в цилиндр. Соотношение между объемами цилиндра и вписанного шара открыл именно Архимед.



Одно из многочисленных изобретений, приписываемых Архимеду, — система бронзовых зеркал. С помощью этих зеркал защитники Сиракуз поджигали римские корабли, фокусируя на них солнечные лучи.

* * *

Метод, использованный Архимедом, стал фактически обязательным к применению в последующие несколько веков. Он доступен, прост и понятен. Математический гений Архимеда создал настоящее чудо. По существу, Архимед придумал алгоритм расчета π с любой точностью. Чтобы использовать этот алгоритм, нужен только калькулятор или компьютер и одна рекуррентная формула. Если n — число сторон вписанного или описанного многоугольника, а а>n и Ь>n — периметры таких многоугольников, то

a>2n = 2a>nb>n/(a>n + b>n),

b>2n = √(a>2nb>n).

В этом и заключается суть алгоритма Архимеда — рекуррентной формулы, с помощью которой рассчитывается приближенное значение π, точность которого повышается по мере роста п. Всегда выполняется соотношение а>n > π > Ь>n.

Используя алгоритм Архимеда начиная с правильного шестиугольника, в котором а>0 =4√3 и b>0 = 6, получим:

3,00000 < π < 3,46410


Еще от автора Хоакин Наварро
Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Рекомендуем почитать
Наука и удивительное

В этой небольшой книге автор так осветил все основные разделы современного естествознания, чтобы их понял читатель, лишенный всякой специальной подготовки. Благодаря упрощениям автора, основанным на знании конкретной взаимосвязи всех явлений природы, читатель легко поймет содержание книги. Цель книги состоит в том, чтобы дать общий беглый очерк современных научных представлений о явлениях природы, показать универсальность этих представлений и их значение для человека.


Знание-сила, 1998 № 01 (847)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Атмосфера

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Знание-сила, 2008 № 09 (975)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 05 (971)

Ежемесячный научно-популярный и научно-художественный журнал.


Загадки острова Пасхи

Данная книга посвящена древним мегалитическим сооружениям и другим памятникам Земли, с которыми связано множество легенд, мифов и интересных гипотез. Читателей ждут встречи с такими загадочными сооружениями, как изваяния острова Пасхи, каменные шары Коста-Рики, Стоунхендж, Мохенджо-Даро, этрусские саркофаги, Парфенон, Гугун и т.д.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.