Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [3]

Шрифт
Интервал

.


Многовековая задача

Число π — не только соотношение между длиной окружности и ее диаметром. Удвоенное отношение между площадью круга и площадью вписанного в него квадрата также равно π. Как нам известно из школы, площадь круга радиуса г равняется

S = πr>2.



Так как площадь квадрата равна квадрату его стороны, по теореме Пифагора получим

S/Площадь вписанного квадрата = πг>2/2r>2 = π/2

Но откуда мы знаем, что число π, используемое для расчета площади, — это то же самое π, с помощью которого рассчитывается длина окружности? Несомненно, это одно и то же число, однако доказать это не так просто. Строгое доказательство появилось только благодаря усилиям Архимеда.

Умы древних математиков волновала задача о построении квадрата, по площади равного данному кругу. Задача имела чисто практическое применение: площадь квадрата вычисляется элементарно, тогда как расчет площади круга был сложен и результатом являлось лишь приближенное значение. Во времена расцвета Древней Греции к этой задаче добавилось еще одно ограничение: искомый квадрат нужно было построить только с помощью циркуля и линейки. Этот метод считался «чистым», «божественным» и соответствовал духу греческой философии. В этом и заключается задача о квадратуре круга: необходимо построить искомый квадрат, используя только циркуль и линейку конечное число раз. Математики бились над задачей, решение которой всякий раз казалось столь близким и неизменно ускользало от них.

На протяжении веков все геометры пытались решить задачу о квадратуре круга, что равносильно построению отрезка длиной π с помощью циркуля и линейки, и всякий раз им удавалось найти лишь более точное приближенное значение и добавить еще один знак к десятичной записи π. Алгебраически задача о квадратуре круга площадью πr>2 равносильна нахождению квадрата со стороной l такого, что

πr>2 = l>2.

Иными словами, необходимо найти такое l, что

l = √(πr>2) = r√π,

что тождественно нахождению √π с помощью циркуля и линейки. Если значение √π найдено, то найти π с помощью циркуля и линейки элементарно, построив прямоугольный треугольник с катетами 1 и √π, а затем продлив перпендикуляр к гипотенузе полученного треугольника до пересечения с продолжением единичного отрезка.

В силу подобия треугольников ABD и ADC выполняется соотношение АВ/AD = AD/АС, откуда AD>2 = АВ∙АС.



Подставляя известное значение АВ = 1 и найденное AD = √(1 + π), получаем: 1 + π = АС, то есть ВС = π.

Если бы значение π было определено, было бы возможным найти √π и решить задачу о квадратуре круга. Но за этой простой формулировкой кроется длинная история, герои которой безуспешно пытались достичь заветной цели, всякий раз все ближе подходя к ней. Очередной талантливый геометр находил следующий знак π и тем самым неявно продвигал всю математику в целом на шаг вперед.


РАДИАН И π

В математике для измерения углов не используются градусы, минуты и секунды. Также не применяются грады и метрические минуты и секунды. Появление математического анализа (производных, интегралов и пр.) привело к тому, что начала использоваться более естественная единица измерения, пусть на первый взгляд она и кажется сложнее. Радиан определяется как угловая величина дуги, длина которой равна ее радиусу.



Так как длина всей окружности равна 2πr, то всю окружность можно представить в виде дуги в 2π радиан. Таким образом,

1 радиан — 360/2π градусов ~ 57°17′5''

Часто применяются следующие соотношения:

30° = π/6; 60° = π/3; 90° = π/2; 180° = π; 360° = 2π.


История числа π: гомеровская Греция

Из нескольких стихов Библии следует, что π = 3. В Библии это значение упоминается в описании постройки круглого алтаря, поэтому не следует расценивать это как попытку рассчитать его точное значение. Приведем цитату из 3-й книги Царств (7:23) для любопытного читателя: «И сделал литое [из меди] море — от края его до края его десять локтей — совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом».

Проницательный читатель заметит, что значение числа π в этом тексте принято равным 3.

В египетском папирусе Ахмеса (древнеегипетское учебное руководство по математике, датированное примерно 1650 г. до н. э.) также неявно упоминается π. В задаче под номером 50 из 87 говорится: «Круглое поле имеет в диаметре 9 хет (1 хет ~ 50 м). Какова площадь поля?» На современном языке площадь этого круга выражается так:

π∙(9/2)>2 = π∙(81/4)

В самом папирусе Ахмеса предложено такое решение:

(64/81)∙d>2

где d — диаметр. Так как d = 9, получим

π∙(81/4) = (64/81)∙d>2 = (64/81)∙9>2 = (64/81)∙81;

π = 256/81 ~ 3,160493827.



Согласно папирусу Ахмеса, квадрат со стороной 8 равен по площади кругу диаметра 9.


Однако это значение менее точно, чем полученное египтянами в Гизе еще в 2600 г. до н. э. Соотношение периметра и высоты пирамид Гизы равно 22/7, хотя считается, что оно подчинялось неким божественным законам, которым следовали архитекторы того времени. Многие исследователи считают это соотношение приближенным значением ТС, которое загадочным образом определили строители пирамид. Если мы допустим, что соотношение периметра и высоты пирамид не случайно, получим


Еще от автора Хоакин Наварро
Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Рекомендуем почитать
Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Знание-сила, 1997 № 03 (837)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.