Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [2]

Шрифт
Интервал

и ее диаметром d постоянно:

L/d = π.

Или, что то же самое,

L = π∙d = π2r = 2πr,

где r — радиус окружности, d = 2r.



Отношение длины окружности к ее диаметру постоянно. Это соотношение интуитивно понятно и становится очевидно после несложных наблюдений. С увеличением диаметра (диаметр равен удвоенному радиусу r) пропорционально возрастает длина окружности.


Чем больше диаметр колеса, тем больше (и пропорционально больше) расстояние, пройденное точкой колеса при полном обороте. Иными словами,

длина окружности/диаметр окружности = константа ~ 3,14.

Знак ~ читается как «приближенно равно». На протяжении большей части истории числа π ученые старались сделать это приближение как можно более точным, находя всё новые знаки справа от 3,14.

Математики использовали все свое умение, чтобы рассчитать число π с наиболее возможной точностью, добавляя десятичные с героическими усилиями.


ВЫПРЯМЛЕНИЕ ОКРУЖНОСТИ

Выпрямление кривой означает измерение ее длины. В простейшей задаче о выпрямлении кривой речь идет об окружности.



При качении окружности длины р по прямой без скольжения окружность описывает один оборот, проходя расстояние, равное диаметру dπ раз. Этот процесс называется выпрямлением окружности. По результатам выпрямления окружности получим p/d = π.

* * *

Долгое время считалось, что когда-нибудь будет найдена последняя цифра числа π, но в 1882 году немецкий математик Фердинанд фон Линдеман (1852–1939) доказал, что это невозможно. Не существует и никогда не будет найдено способа получить «точное» значение π, пользуясь только циркулем и линейкой. Далее в этой книге мы попытаемся объяснить, почему это так.

Сначала число π имело другое название. Хотя к этому символу обращались многие математики, в частности Уильям Отред (1574–1660), Исаак Барроу (1630–1677) и Дэвид Грегори (1659–1708), «официально» его утвердил Уильям Джонс (1675–1749) в 1706 году в работе Synopsis Palmariorum Matheseos, где он использовал букву π, первую букву греческого слова «περιφε'ρεια» — «окружность». Впоследствии великий Леонард Эйлер (1707–1783), который сначала оперировал символами «с» и «р», остановился на греческой букве π, после чего это обозначение начало медленно, но верно распространяться в научном мире. Однако в XX веке в Египте число «пи» маркировали арабской буквой ta по нескольким причинам, в том числе из-за нежелания пользоваться европейскими обозначениями.

Сегодня символ π используется в математике в основном для обозначения числа π, но он также выполняет и другие задачи. Так, π(x) обычно отмечают функцию, показывающую «количество простых чисел, не превосходящих х». Если говорить о менее серьезных вещах, то этой буквой также обозначают гептамино — фигуру, состоящую из семи квадратов, соединенных сторонами, как показано на рисунке:



Многие авторитетные ученые, в том числе и Эйнштейн, считали число π фундаментальным в описании Вселенной. В том или ином виде число π всегда будет всплывать в описании любого явления природы, связанного с окружностями, кругами или вращением, подобно тому как пробка всплывает на поверхность воды. Как и другие константы, π всегда будет сопровождать нас.

С другой стороны, множество людей, которым в той или иной степени интересна нумерология, ищут число π буквально повсюду, как если бы существовала некая теория заговора, связанная с π. Так называемая постоянная тонкой структуры, обозначаемая как ОС, — излюбленная жертва поклонников числа π. Нобелевский лауреат Вернер Гейзенберг (1901–1976) много лет назад предположил, что

1/α = 2>4∙3>3

Но Гейзенберг был не единственным, кто искал связь между этими константами. В различных трудах фигурируют и другие подобные соотношения достаточно высокой точности, например:



ПЛАНЕТА МАЛЕНЬКОГО ПРИНЦА

Существует любопытный факт, который далеко не очевиден. Так как для окружности выполняется соотношение

длина/диаметр константа,

то при увеличении знаменателя в некоторое число раз числитель увеличится в это же число раз. Проиллюстрируем это простым примером. В сказке французского писателя и авиатора Антуана де Сент-Экзюпери (1900–1944) «Маленький принц» главный герой обходит свою планету и чистит вулканы. Допустим, что он обходит всю планету по меридиану. Рост принца ровно 1 метр. Если он пройдет 1000 метров, какое расстояние пройдет его голова? Будем производить все расчеты в метрах. Так как Маленький принц проходит 1000 метров и

длина окружности = 2π∙r,

очевидно, что

пройденное расстояние = 1000 = 2π∙r.

Рост принца равен 1 метру. Приняв за С расстояние, пройденное его головой, получим

C = 2π∙(r + 1).

Вычтем первое равенство из второго. Имеем:

расстояние в метрах, пройденное головой — расстояние в метрах, пройденное ногами

С = 1000 — 2π∙(r + 1) — 2πr = 2π∙(r + 1 — r) = 2π ~ 6,28.

Разница составляет 6,28 м. Любопытно, что радиус планеты никак не влияет на это значение.

Фактически, если мы прибавим к радиусу исходной окружности 1 метр, ее длина увеличится на 6,28 м. Если бы радиус астероида составлял 1000 километров, то дополнительное расстояние, пройденное головой Маленького принца, осталось бы таким же: 6,28 м.



Обложка «Маленького принца»


Еще от автора Хоакин Наварро
Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Рекомендуем почитать
Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Знание-сила, 1997 № 03 (837)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.